簡易檢索 / 詳目顯示

研究生: 余璧婷
Yu Bin Ting
論文名稱: 大氣中甲基硫與NO2,O3,O2 及HO2等分子反應生成SO2的理論計算研究
Theoretical Study of SO2 Formation in the Reaction of CH3S Radical with NO2,O3,O2 and HO2 in the Gas Phase
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 甲基硫二氧化硫
英文關鍵詞: methylthiyl radical, theoretical study
論文種類: 學術論文
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由ab initio理論計算的方法,探討CH3S自由基如何與大氣中的NO2、O3、O2、HO2氣體產生SO2,在MP2/6-311G(d)的計算層級下,設計各種反應形成SO2的反應機制,再比較各種反應路徑的能量以及特性。本文主要分為以下四個部分進行研究:
    第一部份:探討CH3S自由基在大氣中與NO2反應的理論計算研究,由計算結果得知,大氣中的CH3S可和NO2進行兩次或三次反應得到SO2,其反應後的能量也相對穩定。
    第二部分:我們對CH3S會和臭氧層的O3進行反應。發現大氣中SO2的產生,可經由CH3S和O3進行兩次反應得到,最後形成CH3SO2,再經由熱裂解反應得到。
    第三部分:
    對CH3S與O2進行反應作一些探討。經由計算結果發現反應形成中間產物後,再經O-O的斷鍵所需能量都相對高,由此可知O2並不太可能和CH3S反應生成SO2。
    第四部份:
    對CH3S與HO2自由基的反應。經由計算發現,反應形成的中間產物D2和D5會比產物還要穩定許多,由此可知大氣中SO2不太會由CH3S與HO2反應得到。

    This thesis deals with the calculation of tropospheric reaction of methylthiyl radical(CH3S) with NO2,O3,O2 and HO2 to check the formation of SO2 by ab initio theory at MP2/6-311G(d) level. There are four major sections to describe the reaction mechanisms.
    Section 1: We study the reaction between methylthiyl radical and nitrogen dioxide(NO2) in the gas phase . The reaction proceeds with the participation of NO2 by twice or three times to produced sulfur dioxide. The formation energy is relatively large and the product is stable. Therefore, we think the reaction of methylthiyl radical with nitrogen dioxide to produce sulfur dioxide is very possible.
    Section 2: We studied the reaction of CH3S with O3.We found out that with the participation of O3 two times it is possible to form CH3SO2 and than dissociated to SO2.We detect the reaction of methylthiyl radical with ozone twice to produce CH3SO2.After that, we through the thermal decomposition of CH3SO2 and we can get SO2.
    Section 3: We studied the reaction of CH3S+O2. We found out that the cleavage energy of O-O bond of intermediate is quite high. As a consequence, it is not possible for the formation of SO2 via this process.
    Section 4: We studied the reaction of CH3S+HO2.We found out that the intermediates D2 and D5 are very stable, and it seems not possible to proceed further to produce SO2 in this reaction.

    中文摘要……………………………………………………………Ⅲ 英文摘要……………………………………………………………Ⅳ 第一章 緒論 1-1 簡介…………………………………………………………….1 1-2 參考文獻……………………………………………………….4 第二章 CH3S與NO2在氣相中反應生成SO2的理論計算研究 2-1 前言…………………………………………………………….6 2-2 計算方法……………………………………………………….8 2-3 結果與討論……………………………………………………12 2-4 結論……………………………………………………………25 2-5 參考文獻………………………………………………………31 第三章 CH3S與O3在氣相中反應生成SO2的理論計算研究 3-1 前言……………………………………………………………32 3-2 計算方法………………………………………………………33 3-3 結果與討論……………………………………………………33 3-4 結論……………………………………………………………42 3-5 參考文獻………………………………………………………46 第四章 CH3S與O2在氣相中反應生成SO2的理論計算研究 4-1 前言………………………………………………………………47 4-2 計算方法…………………………………………………………50 4-3 結果與討論………………………………………………………50 4-4 結論………………………………………………………………58 4-5 參考文獻…………………………………………………………59 第五章 CH3S與HO2在氣相中反應生成SO2的理論計算研究 5-1 前言……………………………………………………………....60 5-2 計算方法…………………………………………………………61 5-3 結果與討論………………………………………………………62 5-4 結論………………………………………………………………67 5-5 參考文獻…………………………………………………………71 第六章 總結………………………………………………………….73

    1. Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. J. Atoms. Chem. 1992, 14, 315.
    2. Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G. Nature 1987, 326, 655.
    3.http://ind.ntou.edu.tw/~b0232/acidrain.html 陳衍昌二甲基硫酸(DMS) 形成酸雨的相關資料.
    4. Hatakeyama, S.; Akimoto, H. J. Phys. Chem. 1983, 87, 2387-2395.
    5. Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R. J. Phys. Chem. 1996, 100, 14694-14702.
    6. Hynes, A. J.; Wine, P. H. J. Phys. Chem. 1987, 91, 3672-3676.
    7. Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. J. Phys. Chem.
    1992, 96, 2171.
    8. Balla, R. J.; Weiner, B. R.; Nelson, H. H. J. Am. Chem. Soc. 1987, 109, 4804-4808.
    9. Tyndall, G. S.; Ravishankara, A. R. J. Phys. Chem. 1989, 93, 4707-4710.
    10. Tyndall, G. S.; Ravishankara, A. R. J. Phys. Chem. 1989, 93,
    2426-2435.
    11. Borissenko, D.; Kukui, A.; Laverdet, G.; Bras, G. L. J. Phys. Chem. A. 2003, 107, 1155-1161.
    12. Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. J. Phys. Chem. 1993, 97, 5926-5934.
    13. Balla, R. J.; Heicklen, J. J. Phys. Chem. 1985, 89, 4596-4600.
    14. Chang, P. F.; Wang, T. T.; Lee, Y. P. J. Phys. Chem. A 2000, 104, 5525-5529.
    15. Ray, A.; Vassalli, I.; Laverdat, G.; Bras, G. L. J. Phts. Chem. 1996, 100, 8895-8900.
    16. Domone, F.; Murrells, T. P.; Howard, C. J. J. Phys. Chem. 1990, 94,
    5839-5847.
    17. Kukui, A.; Bossoutrot, V.; Laverdet, G.; Bras, G. L. J. Phys. Chem. A. 2000, 104, 935-946.
    18. Frank, A. J.; Turecek, F. J. Phys. Chem. A 1999, 103, 5348-5361.

    19. Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. J. Phys. Chem. 1992, 96, 7502-7505.
    20. Castleman, A. W.; Wincel, J. H.; Mereand, E. J. Phys. Chem. 1995, 99, 6601-6607.
    21. Koch, L. C; Marshall, P.; Ravishankara, A. R. J. Phys. Chem. A. 2004, 108, 5205-5212.

    無法下載圖示
    QR CODE