研究生: |
謝宜庭 Hsieh, Yi-Ting |
---|---|
論文名稱: |
以平行反應監測質譜法定量分析肝癌之醣蛋白生物標記 Parallel reaction monitoring mass spectrometry for targeted quantitation of glycoprotein biomarker in hepatocellular carcinoma |
指導教授: |
陳玉如
Chen, Yu-Ju 陳頌方 Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 215 |
中文關鍵詞: | 肝癌 、紅血球結合蛋白(Hp) 、平行反應監測質譜法 (PRM-MS) |
英文關鍵詞: | Hepatocellular carcinoma (HCC), Haptoglobin (Hp), Parallel reaction monitoring mass spectrometry (PRM-MS) |
DOI URL: | http://doi.org/10.6345/NTNU201900736 |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌在癌症中致死率為第三名。然而,目前診斷肝癌的工具的靈敏度及專一性有限。甲型胎兒蛋白是目前臨床上常使用的生物標記蛋白,然後在40%的肝癌病患濃度卻是比較低的 (2 ng to 20 ng/mL ),造成誤判此需要一個好的血清標記作為肝癌的診斷,特別是針對肝癌初期的病患,因為在早期癌症是沒有症狀的。
蛋白質的醣基化修飾的疾病生物標的已廣受積極探討,因為醣基化的表現量與其結構異質性之變異已與包含癌症等幾種疾病有關。此研究中,我們嘗試針對肝癌(HCC)的生物標的蛋白紅血球結合蛋白 (Haptoglobin,Hp)中的位點特異性糖基化進行量化。我們的團隊於先前已經利用非靶向質譜方法(untargeted-MS)和生物資訊分析找出可能在肝癌患者中具有表現上升的 19 個Hp 特殊醣型。為了驗證這些可能的醣胜肽,在此論文第一部份,我們開發了一種奈米探針結合質譜的技術,平行反應監測(PRM-MS),以應用於這19 個醣胜肽依據不同的醣胜肽修飾 (價數,氧化,鈉的加合物) 衍生出49個衍生物醣胜肽的定量。利用以血紅蛋白修飾的磁性奈米探針(MNP@Hb)從血清中純化出 Hp,經由酵素水解消化後,再進行親水性作用層析法 (Hydrophilic interaction chromatography,HILIC) 將醣胜肽做進一步分離與濃縮。在質譜技術方面,為了減少干擾物的干擾,每條醣胜肽都有最佳的分離窗口, 有干擾勿干擾的醣胜肽前驅物就會選擇狹小的分離窗口 0.7 Da 到 1.2 Da; 沒有干擾勿干擾的前驅物就會選擇1.4 Da 的分離窗口。在此論文的第二部分,將此方法應用於 51個肝炎,54個肝硬化、34個低濃度甲型胎兒蛋白 (20 ng/mL)的肝癌和17個高濃度甲型胎兒蛋白(>20 ng/mL)。利用SDS-PAGE及銀染,來檢測血紅蛋白修飾的磁性奈米探針(MNP@Hb)對紅血球單白標準品的純化效率,其純化效率約為85% 到100%。血紅蛋白修飾的磁性奈米探針2的最大純化量是 5μg。在醣胜肽的平行反應監測質譜法定量的方面,是利用碎片離子的總和及使用內標準品 (SGP) 校正醣胜肽含量。在這些疾病群中,有條醣胜肽在位點N184上的兩個分支含有核心岩藻醣基化和雙唾液酸的醣型 (GP15, m/z: 1045.43 (4+), A4G5F1S2 醣型),在肝癌中的含量明顯上升 (p value : 0.064)。有三條在位點N184的醣胜肽 (GP13、GP40、GP47),在高濃度甲型胎兒蛋白是明顯上升的 (p value 分別為0.031、0.034、0.0342)。在未來我們希望這四個可能的醣胜肽可以與其他標記蛋白像是甲型胎兒蛋白,提供肝癌診斷的平台 。
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Serum diagnosis using alpha fetoprotein (AFP) is the current diagnosis tools for HCC. However, 40% of HCC patients have low concentration (2-20 ng/mL) in serum, which is the major challenge to cause false negative diagnosis in HCC. Consequently, robust serum markers are needed for diagnosis, especially for early-stage HCC lacking specific symptoms. Altered protein glycosylation is extensively reported to be associated with cancer initiation and progression and is emerging as potential biomarker for cancer. Previously, our group has identified 19 site-specific glycopeptides in haptoglobin (Hp), a liver-secreted protein, that are elevated in serum of HCC patients compared to high-risk groups by label-free quantitation using mass spectrometry (MS) analysis. In this work, we aim to validate the expression level of site-specific glycosylation in Hp from viral infection hepatitis (HBV and HCV) liver cirrhosis (LC), HCC-Low AFP (AFP <20 ng/mL), and HCC-High AFP (AFP <20 ng/mL) patients. To explore the alteration of these 19 site-specific glycopeptides as a potential biomarker for HCC, the hepatitis and LC groups were employed as non-cancer controls. We developed a nanoprobe-based assay coupled to parallel reaction monitoring mass spectrometry (PRM-MS) for multiplexed quantification of the 19 glycopeptides that can complement AFP to distinguish non-cancer and cancer for early diagnosis of liver cancer. In the first part of thesis, we establish and optimize the PRM-MS platform for quantitation of 49 glycopeptide precursors derived from 19 glycopeptides with different forms (charge state, oxidation, sodium adducts). The Hp was purified from serum using MNP@Hb magnetic nanoprobes and its glycopeptides were enriched using hydrophilic interaction chromatography (HILIC). To reduce interferences from co-elution of other ion with similar m/z to the target glycopeptide precursor, the PRM-MS method was optimized by setting variable isolation window size for each precursor. For the precursor with interference, the window size were set with narrow range 0.7 to 1.2 Da. For precursor without interference, the window size were set at 1.4 Da. In the second part of thesis, we applied the PRM-MS method to quantitatively compare the Hp glycopeptides in patients with hepatitis patients (n=51), liver cirrhosis (n=54), HCC-low AFP (AFP ≤ 20 ng/mL, n=34), and HCC-high AFP (AFP > 20ng/mL, n=17). The Hp purification efficiency for standard Hp which was evaluated by SDS-PAGE and followed by silver stain, were range from 85% to 100%. The maximum carrying capacity of the MNP@Hb is 5μg. The quantitation of gycopeptides was performed with sum of peak area fragment ions by using PRM-MS and normalization by SGP to eliminate the batches effect. Among the liver disease groups, a core-fucosylated biantennary glycopeptide on site N184 (GP15, m/z: 1045.43 (4+), with A4G5F1S2 glycan) demonstrated statistically significant higher level in HCC compare to non-liver cancer groups (p value : 0.064 for HCC-L and non-cancer group). In addition, 3 glycopeptides on site N184, including fucosylated trisialylated glycopeptides (GP13, m/z: 1041.18 (4+), with p value 0.031, and GP40, m/z: 1387.90 (3+), with p value: 0.034) and bisected glycopeptides (GP47, m/z: 1587.64 (3+) with p value: 0.0342), were significantly higher in HCC with high AFP concentration. In the future, we hope to add these 4 glycopeptides with other potential biomarkers for HCC, such as AFP and AFP-L3 to form a multimarker panel to further improve HCC diagnosis.
Rahib, L.; Smith, B. D.; Aizenberg, R.; Rosenzweig, A. B.; Fleshman, J. M.; Matrisian, L. M., Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014, 74 (11), 2913-21.
Mohan, P.; Barton, B. A.; Narkewicz, M. R.; Molleston, J. P.; Gonzalez-Peralta, R. P.; Rosenthal, P.; Murray, K. F.; Haber, B.; Schwarz, K. B.; Goodman, Z. D., Evaluating progression of liver disease from repeat liver biopsies in children with chronic hepatitis C: a retrospective study. Hepatology 2013, 58 (5), 1580-6.
El-Serag, H. B.; Rudolph, K. L., Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132 (7), 2557-76.
Janevska, D.; Chaloska-Ivanova, V.; Janevski, V., Hepatocellular Carcinoma: Risk Factors, Diagnosis and Treatment. Open Access Maced J Med Sci 2015, 3 (4), 732-6.
Siegel, R.; Naishadham, D.; Jemal, A., Cancer statistics, 2013. CA Cancer J Clin 2013, 63 (1), 11-30.
Tzartzeva, K.; Obi, J.; Rich, N. E.; Parikh, N. D.; Marrero, J. A.; Yopp, A.; Waljee, A. K.; Singal, A. G., Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology 2018, 154 (6), 1706-1718 e1.
Zierler, B. K., Ultrasonography and diagnosis of venous thromboembolism. Circulation 2004, 109 (12 Suppl 1), I9-14.
Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.; Meyer, T.; Nault, J. C.; Neumann, U.; Ricke, J.; Sangro, B.; Schirmacher, P.; Verslype, C.; Zech, C. J.; Arnold, D.; Martinelli, E.; Committee, E. G., Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018, 29 (Supplement_4), iv238-iv255.
Bialecki, E. S.; Di Bisceglie, A. M., Diagnosis of hepatocellular carcinoma. Hpb 2005, 7 (1), 26-34.
Cassinotto, C.; Aube, C.; Dohan, A., Diagnosis of hepatocellular carcinoma: An update on international guidelines. Diagn Interv Imaging 2017, 98 (5), 379-391.
Zacharakis, G.; Aleid, A.; Aldossari, K. K., New and old biomarkers of hepatocellular carcinoma. Hepatoma Research 2018, 4 (10), 65.
Ahmed Mohammed, H. F.; Roberts, L. R., Should AFP (or any biomarkers) be used for HCC surveillance? Curr Hepatol Rep 2017, 16 (2), 137-145.
Zhang, S.; Cao, X.; Gao, Q.; Liu, Y., Protein glycosylation in viral hepatitis-related HCC: Characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 2017, 406, 64-70.
Huang, Y.; Wu, H.; Xue, R.; Liu, T.; Dong, L.; Yao, J.; Zhang, Y.; Shen, X., Identification of N-glycosylation in hepatocellular carcinoma patients' serum with a comparative proteomic approach. PLoS One 2013, 8 (10), e77161.
Mehta, A.; Herrera, H.; Block, T., Glycosylation and liver cancer. Adv Cancer Res 2015, 126, 257-79.
Dave Li , T. M., Shinji Satomura, AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clinica Chimica Acta 2001, 313 ((1-2)), 15-19.
Durazo, F. A.; Blatt, L. M.; Corey, W. G.; Lin, J. H.; Han, S.; Saab, S.; Busuttil, R. W.; Tong, M. J., Des-gamma-carboxyprothrombin, alpha-fetoprotein and AFP-L3 in patients with chronic hepatitis, cirrhosis and hepatocellular carcinoma. J Gastroenterol Hepatol 2008, 23 (10), 1541-8.
Sarrats, A.; Saldova, R.; Pla, E.; Fort, E.; Harvey, D. J.; Struwe, W. B.; de Llorens, R.; Rudd, P. M.; Peracaula, R., Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin Appl 2010, 4 (4), 432-48.
Maverakis, E.; Kim, K.; Shimoda, M.; Gershwin, M. E.; Patel, F.; Wilken, R.; Raychaudhuri, S.; Ruhaak, L. R.; Lebrilla, C. B., Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 2015, 57, 1-13.
Springer, S. A.; Gagneux, P., Glycan evolution in response to collaboration, conflict, and constraint. J Biol Chem 2013, 288 (10), 6904-11.
Comunale, M. A.; Wang, M.; Hafner, J.; Krakover, J.; Rodemich, L.; Kopenhaver, B.; Long, R. E.; Junaidi, O.; Bisceglie, A. M. D.; Block, T. M.; Mehta, A. S., Identification and Development of Fucosylated Glycoproteins as Biomarkers of Primary Hepatocellular Carcinoma. Journal of Proteome Research 2009, 8 (2), 595-602.
Yi, C. H.; Weng, H. L.; Zhou, F. G.; Fang, M.; Ji, J.; Cheng, C.; Wang, H.; Liebe, R.; Dooley, S.; Gao, C. F., Elevated core-fucosylated IgG is a new marker for hepatitis B virus-related hepatocellular carcinoma. Oncoimmunology 2015, 4 (12), e1011503.
Zhu, J.; Chen, Z.; Zhang, J.; An, M.; Wu, J.; Yu, Q.; Skilton, S. J.; Bern, M.; Ilker Sen, K.; Li, L.; Lubman, D. M., Differential Quantitative Determination of Site-Specific Intact N-Glycopeptides in Serum Haptoglobin between Hepatocellular Carcinoma and Cirrhosis Using LC-EThcD-MS/MS. J Proteome Res 2019, 18 (1), 359-371.
Zhang, S.; Shang, S.; Li, W.; Qin, X.; Liu, Y., Insights on N-glycosylation of human haptoglobin and its association with cancers. Glycobiology 2016, 26 (7), 684-692.
Kang, X.; Sun, L.; Guo, K.; Shu, H.; Yao, J.; Qin, X.; Liu, Y., Serum protein biomarkers screening in HCC patients with liver cirrhosis by ICAT-LC-MS/MS. J Cancer Res Clin Oncol 2010, 136 (8), 1151-9.
Zhu, J.; Lin, Z.; Wu, J.; Yin, H.; Dai, J.; Feng, Z.; Marrero, J.; Lubman, D. M., Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. J Proteome Res 2014, 13 (6), 2986-97.
Shang, S.; Li, W.; Qin, X.; Zhang, S.; Liu, Y., Aided Diagnosis of Hepatocellular Carcinoma Using Serum Fucosylated Haptoglobin Ratios. J Cancer 2017, 8 (5), 887-893.
Zhang, S.; Jiang, K.; Sun, C.; Lu, H.; Liu, Y., Quantitative analysis of site-specific N-glycans on sera haptoglobin beta chain in liver diseases. Acta Biochim Biophys Sin (Shanghai) 2013, 45 (12), 1021-9.
Dalpathado, D. S.; Desaire, H., Glycopeptide analysis by mass spectrometry. Analyst 2008, 133 (6), 731-8.
Wuhrer, M.; Deelder, A. M.; Hokke, C. H., Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 825 (2), 124-33.
Zaia, J., Mass spectrometry of oligosaccharides. Mass Spectrom 2004, rev (23), 161-227.
Chen, C. C.; Su, W. C.; Huang, B. Y.; Chen, Y. J.; Tai, H. C.; Obena, R. P., Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 2014, 139 (4), 688-704.
Chandler, K., Glycoprotein Disease Markers and Single
Protein-omics. Molecular & Cellular Proteomics 2013.
Larsen, M. R.; Hojrup, P.; Roepstorff, P., Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 2005, 4 (2), 107-19.
Buszewski, B.; Noga, S., Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem 2012, 402 (1), 231-47.
Matsumura, K.; Higashida, K.; Ishida, H.; Hata, Y.; Yamamoto, K.; Shigeta, M.; Mizuno-Horikawa, Y.; Wang, X.; Miyoshi, E.; Gu, J.; Taniguchi, N., Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J Biol Chem 2007, 282 (21), 15700-8.
Hedlund, M.; Ng, E.; Varki, A.; Varki, N. M., alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008, 68 (2), 388-94.
Feng, S.; Yang, N.; Pennathur, S.; Goodison, S.; Lubman, D. M., Enrichment of glycoproteins using nanoscale chelating concanavalin A monolithic capillary chromatography. Anal Chem 2009, 81 (10), 3776-83.
Palmisano, G.; Lendal, S. E.; Engholm-Keller, K.; Leth-Larsen, R.; Parker, B. L.; Larsen, M. R., Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc 2010, 5 (12), 1974-82.
Wan, H.; Yan, J.; Yu, L.; Sheng, Q.; Zhang, X.; Xue, X.; Li, X.; Liang, X., Zirconia layer coated mesoporous silica microspheres as HILIC SPE materials for selective glycopeptide enrichment. Analyst 2011, 136 (21), 4422-30.
Ma, W.-F.; Li, L.-L.; Zhang, Y.; An, Q.; You, L.-J.; Li, J.-M.; Zhang, Y.-T.; Xu, S.; Yu, M.; Guo, J.; Lu, H.-J.; Wang, C.-C., Ligand-free strategy for ultrafast and highly selective enrichment of glycopeptides using Ag-coated magnetic nanoarchitectures. Journal of Materials Chemistry 2012, 22 (45), 23981.
Chandler, K. B.; Pompach, P.; Goldman, R.; Edwards, N., Exploring site-specific N-glycosylation microheterogeneity of haptoglobin using glycopeptide CID tandem mass spectra and glycan database search. J Proteome Res 2013, 12 (8), 3652-66.
Segu, Z. M.; Mechref, Y., Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun Mass Spectrom 2010, 24 (9), 1217-25.
Olsen, J. V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M., Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 2007, 4 (9), 709-12.
Yu, Q.; Wang, B.; Chen, Z.; Urabe, G.; Glover, M. S.; Shi, X.; Guo, L. W.; Kent, K. C.; Li, L., Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization. J Am Soc Mass Spectrom 2017, 28 (9), 1751-1764.
Cao, Q.; Zhao, X.; Zhao, Q.; Lv, X.; Ma, C.; Li, X.; Zhao, Y.; Peng, B.; Ying, W.; Qian, X., Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry. Anal Chem 2014, 86 (14), 6804-11.
Bruderer, R.; Sondermann, J.; Tsou, C. C.; Barrantes-Freer, A.; Stadelmann, C.; Nesvizhskii, A. I.; Schmidt, M.; Reiter, L.; Gomez-Varela, D., New targeted approaches for the quantification of data-independent acquisition mass spectrometry. Proteomics 2017, 17 (9).
Bauer, M.; Ahrne, E.; Baron, A. P.; Glatter, T.; Fava, L. L.; Santamaria, A.; Nigg, E. A.; Schmidt, A., Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites. J Proteome Res 2014, 13 (12), 5973-88.
Kaufmann, M.; Gallagher, J. C.; Peacock, M.; Schlingmann, K. P.; Konrad, M.; DeLuca, H. F.; Sigueiro, R.; Lopez, B.; Mourino, A.; Maestro, M.; St-Arnaud, R.; Finkelstein, J. S.; Cooper, D. P.; Jones, G., Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab 2014, 99 (7), 2567-74.
Hoffman, M. A.; Fang, B.; Haura, E. B.; Rix, U.; Koomen, J. M., Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer. J Proteome Res 2018, 17 (1), 63-75.
Yuan, W.; Sanda, M.; Wu, J.; Koomen, J.; Goldman, R., Quantitative analysis of immunoglobulin subclasses and subclass specific glycosylation by LC-MS-MRM in liver disease. J Proteomics 2015, 116, 24-33.
Schaer, D. J.; Vinchi, F.; Ingoglia, G.; Tolosano, E.; Buehler, P. W., Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol 2014, 5, 415.
Dela Rosa, M. A.; Chen, W. C.; Chen, Y. J.; Obena, R. P.; Chang, C. H.; Capangpangan, R. Y.; Su, T. H.; Chen, C. L.; Chen, P. J.; Chen, Y. J., One-Pot Two-Nanoprobe Assay Uncovers Targeted Glycoprotein Biosignature. Anal Chem 2017, 89 (7), 3973-3980.
Bern, M.; Kil, Y. J.; Becker, C., Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics 2012, Chapter 13, Unit13 20.
Jaitly, N.; Mayampurath, A.; Littlefield, K.; Adkins, J. N.; Anderson, G. A.; Smith, R. D., Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinformatics 2009, 10, 87.
MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26 (7), 966-8.