簡易檢索 / 詳目顯示

研究生: 鄭書麟
Cheng, Shu-Lin
論文名稱: 暴脹磁場與太初黑洞的形成
Inflationary magnetogenesis and the production of primordial black holes
指導教授: 李沃龍
Lee, Wo-Lung
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 52
中文關鍵詞: CosmologyCosmic InflationCosmic microwave backgroundLarge scale structuresPrimordial black holesPrimordial magnetic fieldsGravitational waves
英文關鍵詞: Cosmology, Cosmic Inflation, Cosmic microwave background, Large scale structures, Primordial black holes, Primordial magnetic fields, Gravitational waves
DOI URL: http://doi.org/10.6345/DIS.NTNU.DP.003.2019.B04
論文種類: 學術論文
相關次數: 點閱:149下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探索太初磁場與太初黑洞在宇宙暴脹中形成的機制。我們首先利用軸子與光子的耦合,並計入暴脹前的快滾階段,因而在宇宙暴脹下成功製造出可延續至今的大尺度種子磁場,但卻發現過程中存在著能量守恆的限制。於是,我們在軸子與伸縮子雙重驅動的暴脹電磁場中,成功找到可滿足各項物理條件限制的太初磁場解。
    然後,我們將來自於規範場中粒子的反饋作用納入計算,透過適當的數值方法計算暴脹場和光子耦合的模態微分方程後,發現在接近暴脹結束前所產生的能量密度峰值,可能會導致太初黑洞的形成。接著,我們在單一位能項與正弦波疊加的組合位能中,試著分析由超普朗克軸子場所驅動的宇宙暴脹。我們發現在軸子單延拓暴脹模型裡,適當的軸子-規範場耦合確實能夠產生質量範圍在10^8公克到10太陽質量的太初磁場。我們也研究了模型中所產生的重力波強度與脈衝星計時陣列和干涉儀實驗的關聯。

    We first discuss the generation of primordial magnetic fields during inflation by a simple axion-photon coupling with a fast-roll stage. Though a large enough coherent magnetic seed field could be produced, there exists an energy budget barrier. We then explore the inflationary dilaton-axion magnetogenesis and find plausible solutions to resolve the energy budget problem. We also consider the backreaction from the particle production of gauge fields during inflation era. By solving the coupled differential equations of motion numerically, we obtain proper mode functions for both the inflaton and photons.
    The energy density peaks produced near the end of inflation may lead to the formation of primordial black holes.
    We consider driving the inflation by the axion with super-Planckian field values in a monomial potential with superimposed sinusoidal modulations.
    In the axion monodromy inflation model, the axion-gauge field coupling constant favors the formation of primordial black holes with masses ranging from 10^8 grams to 10 solar masses.
    We also study the associated gravitational waves and their detection in pulsar timing arrays and interferometry experiments.

    1 Introduction (3) 1.1 Cosmic magnetic field (4) 1.2 Magnetogenesis in the inflation (5) 1.3 Primordial magnetic field (5) 1.4 Primordial black hole (6) 1.5 Planck measurements (7) 1.6 Thesis outline (8) 2 Pseudo-scalar field coupling magnetogenesis (10) 2.1 Chaotic inflation (10) 2.2 Axial coupling magnetogenesis (11) 2.3 Fast-roll regime of the inflation (13) 2.4 Summary (14) 3 Inflationary dilaton-axion magnetogenesis (17) 3.1 Dilaton-axion electromagnetism (17) 3.2 Magnetogenesis in chaotic inflation (20) 3.3 Difficulty of inflationary magnetogenesis (22) 3.4 Summary (23) 4 Electromagnetic backreaction in axion monodromy inflation (24) 4.1 Pseudoscalar inflation with backreaction (24) 4.2 Gauge quanta production and backreaction (25) 4.3 Numerical results (27) 4.4 Summary (29) 5 Generation of high stellar-mass primordial black holes in inflation (31) 5.1 Binary black-hole (BBH) systems (31) 5.2 High stellar-mass primordial black holes (32) 5.3 Numerical result (33) 5.4 Gravitational wave and GW150914 (35) 5.5 Summary (38) 6 Primordial black holes and associated gravitational waves (39) 6.1 Inflation with a modified monomial potential (39) 6.2 Numerical result (40) 6.3 Constraint from the Planck measurements (42) 6.4 Associated gravitational waves (44) 6.5 Summary (44) 7 Conclusion (46) Biblography (48)

    [1]P. A. R. Ade et al. (Planck Collaboration), arXiv:1502.01589.
    [2]P. A. R. Ade et al. (Planck Collaboration), arXiv:1502.02114.
    [3]P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994). doi: 10.1088/0034-4885/57/4/001.
    [4]L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002). doi: 10.1103/RevModPhys.74.775.
    [5]Massimo Giovannini, Lect. NotePhys. 737, 863-939 (2008).
    [6]E. N. Parker, Astrophys. J. 163, 255 (1971). doi: 10.1086/150765; E. N. Parker, Clarendon, Oxford, England, (1979); Ya. B. Zel'dovich, A. A. Ruzmaikin, and D. D. Sokoloff, Gordon and Breach, New York, (1983).
    [7]W. Daniel Garretson, George B. Field and Sean M. Carrol, Phys. Rev. D 46, 5346-5351 (1992).
    [8]K. Subramanian, Astro. Nachr. 331, 110 (2010). doi: 10.1002/asna.200911312.
    [9]W. Lee and K. W. Ng, Phys. Rev. D 67, 107302 (2003). doi: 10.1103/PhysRevD.67.107302.
    [10]C. Caprinia and L. Sorbo, JCAP 10, 056 (2014).
    [11]For reviews see: K. A. Olive, Phys. Rep. 190, 307 (1990); D. H. Lyth and A. Riotto, Phys.Rep. 314, 1 (1999).
    [12]Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Phys. Rev. Lett. 116 (2016) 061102, arXiv:1602.03837.
    [13]Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Astrophys. J. 833 (2016) 1, arXiv:1602.03842.
    [14]S. Bird et al., Phys. Rev. Lett. 116 (2016) 201301, arXiv:1603.00464.
    [15]For a review, see: E. Silverstein, World Scientific, Singapore, (2017).
    [16]E. Silverstein and A. Westphal, Phys.Rev. D 78, 106003 (2008).
    [17]L. McAllister, E. Silverstein, and A. Westphal, Phys.Rev. D 82, 046003 (2010).
    [18]R. Flauger, L. McAllister, E. Pajer, A. Westphal, and G. Xu, J. Cosmol. Astropart. Phys. 06 (2010) 009.
    [19]R. Flauger and E. Pajer, J. Cosmol. Astropart. Phys. 01 (2011) 017.
    [20]N. Kaloper, A. Lawrence, and L. Sorbo, Astropart. Phys. 03 (2011) 023.
    [21]T. Higaki, T. Kobayashi, O. Seto, and Y. Yamaguchi, Astropart. Phys. 10 (2014) 025.
    [22]E. Palti and T. Weigand, J. High Energy Phys. 04 (2014) 155.
    [23]Y. Wan, S. Li, M. Li, T. Qiu, Y. Cai, and X. Zhang, Phys.Rev. D 90, 023537 (2014).
    [24]Q. E. Minor and M. Kaplinghat, Phys.Rev. D 91, 063504 (2015).
    [25]L. C. Price, Phys.Rev. D 92, 103507 (2015); K. Choi and H. Kim, Phys. Lett. B 759, 520 (2016).
    [26]P. A. R. Ade et al., Planck Collaboration, arXiv:1303.5062.
    [27]A. D. Linde, JETP Lett. 38, 176 (1983). doi: 10.1016/0370-2693(83)90837-7.
    [28]G. Field and S. Carroll, Phys. Rev. D 62, 103008 (2000). doi: 10.1103/Phys-RevD.62.103008.
    [29]D.-S. Lee, W. Lee, and K.-W. Ng, Phys. Lett. B 542, 1 (2002). doi: 10.1016/S0370-2693(02)02264-5.
    [30]M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988). doi: 10.1103 / PhysRevD.37.2743.
    [31]Shu-Lin Cheng and Wolung Lee, CHINESE J. Phys. VOL. 52, NO. 5 (2014).
    [32]A. Arvanitaki et al., Phys. Rev. D 81, 123530 (2010). doi: 10.1103/PhysRevD.81.123530.
    [33]V. Demozzi, V. Mukhanov, and H. Rubinstein, JCAP 08, 025 (2009).
    [34]Kin-Wang Ng, Shu-Lin Cheng, and Wolung Lee, CHINESE J. Phys. VOL. 53, NO. 6 (2015).
    [35]N. Barnaby, R. Namba, and M. Peloso, Phys. Rev. D 85, 123523 (2012). doi: 10.1103/Phys-RevD.85.123523; M. Giovannini, Phys. Rev. D 87, 083004 (2013). doi: 10.1103/Phys-RevD.87.083004; T. Fujita and S. Yokoyama, JCAP 03, 013 (2014); R. J. Z. Ferreira, R.K. Jain, and M. S. Sloth, JCAP 06, 053 (2014).
    [36]N. Barnaby and M. Peloso, Phys. Rev. Lett. 106, 181301 (2011).doi: 10.1103/PhysRevLett.106.181301; N. Barnaby, R. Namba, and M. Peloso, JCAP 04, 009(2011); P. D. Meerburg and E. Pajer, JCAP 02, 017 (2013).doi: 10.1088/1475-7516/2013/08/037.
    [37]N. Barnaby, E. Pajer, and M. Peloso, Phys. Rev. D 85,023525 (2012).
    [38]M. M. Anber and L. Sorbo, Phys. Rev. D 81, 043534 (2010).
    [39]A. Linde, S. Mooij, and E. Pajer, Phys. Rev. D 87, 103506 (2013).
    [40]Shu-Lin Cheng, Wolung Lee, and Kin-Wang Ng, Phys. Rev. D 93, 063510 (2016).
    [41]P. D. Meerburg and E. Pajer, J. Cosmol. Astropart. Phys. 02 (2013) 017.
    [42]E. Bugaev and P. Klimai, Phys. Rev. D 90, 103501 (2014).
    [43]T. Fujita, R. Namba, Y. Tada, N. Takeda, and H. Tashiro, J. Cosmol. Astropart. Phys. 05 (2015) 054.
    [44]K.-W. Ng, Int. J. Mod. Phys. A 11, 3175 (1996).
    [45]D. Green, B. Horn, L. Senatore and E. Silverstein, Phys. Rev. D 80 (2009) 063533, arXiv: 0902.1006.
    [46]Shu-Lin Cheng, Wolung Lee, and Kin-Wang Ng, JHEP 02 008 (2017).
    [47]J. Garcia-Bellido, M. Peloso, and C. Unal, JCAP 09 (2016) 013, arXiv:1707.02441.
    [48]K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, T. Yanagida, Phys. Rev. D 95, 123510 (2017).
    [49]N. Orlofsky, A. Pierce, and J. D. Wells, Phys. Rev. D 95, 063518 (2017).
    [50]T. Nakama, J. Silk, and M. Kamionkowski, Phys. Rev. D 95, 043511 (2017).
    [51]L. Sorbo, J. Cosmol. Astropart. Phys. 06 (2011) 003.
    [52]J. Garcia-Bellido, M. Peloso, and C. Unal, JCAP 12 (2016) 031, arXiv:1610.03763.
    [53]L. Lentati et al., Mon. Not. Roy. Astron. Soc. 453 (2015) 2576, arXiv:1504.03692.
    [54]NANOGrav collaboration, Z. Arzoumanian et al., Astrophys. J. 821 (2016) 13, arXiv:1508.03024.
    [55]R.M. Shannon et al., Science 349 (2015) 1522, arXiv:1509.07320.
    [56]G. Janssen et al., Giardini Naxos Italy June 9–13 2014, PoS(AASKA14)037, arXiv:1501.00127.
    [57]L. McAllister, E. Silverstein, A. Westphal, and T. Wrase, J. High Energy Phys. 09 (2014) 123.
    [58]F. Marchesano, G. Shiu, and A. M. Uranga, J. High Energy Phys. 09 (2014) 184.
    [59]R. Flauger, L. McAllister, E. Silverstein, and A. Westphal, arXiv:1412.1814.
    [60]Planck Collaboration, P. A. R. Ade, et al., Astron. Astrophys. 594, A20 (2016).
    [61]Shu-Lin Cheng, Wolung Lee, and Kin-Wang Ng, JCAP 07 001 (2018).
    [62]L. Lentati et al., Mon. Not. Roy. Astron. Soc. 453, 2576 (2015).
    [63]Z. Arzoumanian et al. (NANOGrav), Astrophys. J. 821, 13 (2016); R. M. Shannon et al., Science 349, 1522 (2015).
    [64]LIGO Scientific Collaboration and Virgo Collaboration: B. P. Abbott et al., Phys. Rev. Lett. 118, 121101 (2017).
    [65]LIGO Scientific Collaboration and Virgo Collaboration: B. P. Abbott et al., Phys. Rev. Lett. 116, 131102 (2016).
    [66]N. Bartolo et al., J. Cosmol. Astropart. Phys. 12 (2016) 026.
    [67]G. Janssen et al., Advancing Astrophysics with the Square Kilometre Array, PoS AASKA14 (2015) 037.

    下載圖示
    QR CODE