簡易檢索 / 詳目顯示

研究生: 艾競一
Ai, Jing-Yi
論文名稱: 急性MICT和LV-HIIT對中老年人執行功能影響 :事件相關電位研究
Effect of Acute MICT and LV-HIIT on Inhibition in Late-middle-aged Adults: An ERPs Study
指導教授: 張育愷
Chang, Yu-Kai
口試委員: 洪聰敏
Hong, Tsung-Min
林儷蓉
Lin, Li-Jung
阮啟弘
Juan, Chi-Hung
王駿濠
Wang, Chun-Hao
張育愷
Chang, Yu-Kai
口試日期: 2023/07/31
學位類別: 博士
Doctor
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 75
中文關鍵詞: LV-HIITMICT抑制控制乳酸中老年人
英文關鍵詞: LV-HIIT, MICT, inhibition, lactate, late-middle-aged adults
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301009
論文種類: 學術論文
相關次數: 點閱:166下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球高齡化浪潮來襲,老化已成為現今社會需要重視的課題,伴隨著認知退化與罹患失智症的案例與日俱增,使得如何提升中老年人認知功能的議題越來越受到重視。高強度間歇訓練 (HIIT) 可以改善認知功能和表現。大多數HIIT研究採用 "全力以赴 "的可變負荷運動干預,然而這可能不安全,也不能被特定的人 (中高齡或者病患等) 所接受。低量HIIT是為了確定性能、代謝和分子適應更實用的模型,儘管總運動量低,但其效益可以類似于傳統耐力訓練并且產生積極的情緒價值。此外,急性運動誘發乳酸濃度之提升可能與認知表現之增進產生關聯。因此,本研究之目的為探討急性中等强度連續運動 (MICT)和低量HIIT (LV-HIIT)對中老年人抑制控制之影響。本文採用對抗平衡組内設計,參與者按順序隨機分派至完成30分鐘的急性MICT、19分鐘LV-HIIT或30分鐘非運動干預 (觀看影片) 。當參與者在基線和干預模式後執行Stroop任務時,同時測量神經心理學[即準確率 (ACC) 和反應時間 (RT) ]、神經生理學[即事件相關電位 (ERP) P3和N450振幅]以及血清中乳酸濃度指標。主要結果表明,MICT和LV-HIIT對抑制控制的行爲表現有相似的效益,其中LV-HIIT對神經電激活有特定的内在歷程,次要結果表明,LV-HIIT產生較多的乳酸並令人充滿愉悅感。總而言之,LV-HIIT可能是一種更省時高效率來改善認知健康的方法。

    Aging has emerged as a significant concern in our society because of the recent worldwide aging trend. Additionally, there is a growing emphasis on improving the cognitive function of the elderly due to the rise in the incidence of dementia and cognitive decline in middle-aged people. Previous research has demonstrated the value of high-intensity interval training (HIIT) in enhancing cognitive ability. However, the 'all-out' variable-load exercise regimens that are frequently used in most HIIT studies might not be suitable for everyone or be well tolerated by them. To address this issue, low-volume HIIT (LV-HIIT) was developed as a more practical model that can produce metabolic and molecular adaptations similar to endurance training despite a lower total exercise volume. Our main goal was to determine how a single session of LV-HIIT and MICT affected middle-aged people’s inhibitory control. The impact of an acute exercise-induced elevation in lactate on the cognitive performance of senior citizens was another goal of our research. Participants randomly conducted 30 min of MICT, 19 min of LV-HIIT, or a non-exercise intervention (CON) session in a counterbalanced order using a counterbalanced crossover design. We simultaneously measured neuropsychological indices (accuracy rate and reaction time) and neurophysiological indices (event-related potential P3 and N450 amplitude) using a Stroop task at baseline and after each intervention mode. To summarize, the findings of the current study indicate that MICT and LV-HIIT have the same inhibition performance and differential underlying neuroelectric activation. The study implies that LV-HIIT may be a more time-effective strategy for enhancing cognitive health.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Study purpose 6 1.3 Study hypotheses 6 Chapter 2 Review of the literature 7 2.1 Executive function in late-middle-aged adults 7 2.2 Effect of acute exercise on EF in late-middle-aged adults 7 2.2.1 Effect of acute exercise-induced lactate on cognition 8 2.2.2 Effect of acute LV-HIIT and MICT on EF in middle-aged adults 9 2.2.3 Effect of acute LV-HIIT and MICT on enjoyment in middle-aged adults 11 2.3 Effect of acute exercise on P3 and N450 12 2.3.1 Effect of acute LV-HIIT and MICT on P3 and N450 12 2.4 Effect of acute exercise on P3 and N450 14 2.5 Summary 15 Chapter 3 Methodology 17 3.1 Participant 17 3.2 Study design and experimental trials 17 3.2.1 Study design 17 3.2.2 Experimental trials 17 3.2.3 Standardized breakfast 18 3.3 Measures 19 3.3.1 Stroop task 19 3.3.2 Event-related potential assessment 19 3.3.3 Measurement of lactate concentration and Heart Rate 20 3.3.4 PACES 20 3.3.5 MMSE 20 3.3.6 IPAQ 20 3.4 Submaximal graded exercise test 21 3.4.1 Herat rate (HR) 21 3.4.2 Rating of perceived exertion (RPE) 21 3.4.3 Submaximal graded exercise test 21 3.5 Intervention 22 3.5.1 LV-HIIT 22 3.5.2 MICT 22 3.5.3 Control condition (CON) 22 3.6 Data analysis 23 Chapter 4 Results 25 4.1 Descriptive Data 25 4.2 Behavioral 26 4.2.1 Behavioral results 26 4.2.2 PA is correlated with performance on the Stroop task 26 4.2.3 Heart Rate Responses 27 4.3 Neuroelectric measures 30 4.3.1 P3 amplitude 30 4.3.2 N450 amplitude 32 4.4 Molecular biomarkers 35 4.4.1 Lactate 35 4.4.2 Correlations between the neurocognitive and molecular indices 36 4.4.3 Subjective Responses 36 Chapter 5 Discussion 38 5.1 Behavioral indices 38 5.2 Neuroelectric indices 40 5.3 Brain mechanisms underlying modulations 44 5.4 Subjective Responses 46 5.5 Strengths and limitations 48 5.6 Significance for the field 49 Chapter 6 Conclusion 51 References 52

    Abbott, R. D., White, L. R., Ross, G. W., Masaki, K. H., Curb, J. D., & Petrovitch, H. (2004). Walking and dementia in physically capable elderly men. JAMA, 292(12), 1447-1453.
    Adeva-Andany, M., Lopez-Ojen, M., Funcasta-Calderon, R., Ameneiros-Rodriguez, E., Donapetry-Garcia, C., Vila-Altesor, M., & Rodriguez-Seijas, J. (2014). Comprehensive review on lactate metabolism in human health. Mitochondrion, 17, 76-100. https://doi.org/10.1016/j.mito.2014.05.007
    Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and Motor Skills, 118(1), 63-72. https://doi.org/10.2466/22.06.PMS.118k10w4
    Alves, C. R. R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R. M., Morine, D., & Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. Journal of Sport and Exercise Psychology, 34(4), 539-549.
    Anderer, P., Semlitsch, H. V., & Saletu, B. (1996). Multichannel auditory event-related brain potentials: Effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalography and Clinical Neurophysiology, 99(5), 458-472. https://doi.org/10.1016/s0013-4694(96)96518-9
    Ando, S., Komiyama, T., Tanoue, Y., Sudo, M., Costello, J. T., Uehara, Y., & Higaki, Y. (2022). Cognitive improvement after aerobic and resistance exercise is not associated with peripheral biomarkers. Frontiers in Behavioral Neuroscience, 16, 853150.
    Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews(2).
    Anguera, J. A., & Gazzaley, A. (2012). Dissociation of motor and sensory inhibition processes in normal aging. Clinical Neurophysiology, 123(4), 730-740. https://doi.org/10.1016/j.clinph.2011.08.024
    Arevalo-Rodriguez, I., Smailagic, N., Roque, I. F. M., Ciapponi, A., Sanchez-Perez, E., Giannakou, A., Pedraza, O. L., Bonfill Cosp, X., & Cullum, S. (2015). Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews, 2015(3), CD010783. https://doi.org/10.1002/14651858.CD010783.pub2
    Astorino, T. A., Schubert, M. M., Palumbo, E., Stirling, D., McMillan, D. W., Cooper, C., Godinez, J., Martinez, D., & Gallant, R. (2013). Magnitude and time course of changes in maximal oxygen uptake in response to distinct regimens of chronic interval training in sedentary women. European Journal of Applied Physiology, 113(9), 2361-2369. https://doi.org/10.1007/s00421-013-2672-1
    Astorino, T. A., & Thum, J. S. (2018). Interval training elicits higher enjoyment versus moderate exercise in persons with spinal cord injury. The Journal of Spinal Cord Medicine, 41(1), 77-84. https://doi.org/10.1080/10790268.2016.1235754
    Babraj, J. A., Vollaard, N. B., Keast, C., Guppy, F. M., Cottrell, G., & Timmons, J. A. (2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders, 9, 3. https://doi.org/10.1186/1472-6823-9-3
    Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. Journal of Sports Sciences, 29(6), 547-553.
    Berchicci, M., Lucci, G., & Di Russo, F. (2013). Benefits of physical exercise on the aging brain: The role of the prefrontal cortex. The Journals of Gerontology: Series A, 68(11), 1337-1341. https://doi.org/10.1093/gerona/glt094
    Berchicci, M., Lucci, G., Pesce, C., Spinelli, D., & Di Russo, F. (2012). Prefrontal hyperactivity in older people during motor planning. Neurolmage, 62(3), 1750-1760. https://doi.org/10.1016/j.neuroimage.2012.06.031
    Boa Sorte Silva, N. C., Petrella, A. F. M., Christopher, N., Marriott, C. F. S., Gill, D. P., Owen, A. M., & Petrella, R. J. (2021). The benefits of high-intensity interval training on cognition and blood pressure in older adults with hypertension and subjective cognitive decline: Results from the heart & mind study. Frontiers in Aging Neuroscience, 13, 643809. https://doi.org/10.3389/fnagi.2021.643809
    Brisswalter, J., Collardeau, M., & Rene, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555-566. https://doi.org/10.2165/00007256-200232090-00002
    Brooks, G. A. (1985). Anaerobic threshold: Review of the concept and directions for future research. Medicine & Science in Sports & Exercise, 17(1), 22-34. https://www.ncbi.nlm.nih.gov/pubmed/3884959
    Brush, C., Bocchine, A. J., Olson, R. L., Ude, A. A., Dhillon, S. K., & Alderman, B. L. (2020). Does aerobic fitness moderate age-related cognitive slowing? Evidence from the P3 and lateralized readiness potentials. International Journal of Psychophysiology, 155, 63-71.
    Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Sports Medicine, 43(5), 313-338.
    Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151-160. https://doi.org/10.1113/jphysiol.2007.142109
    Calverley, T. A., Ogoh, S., Marley, C. J., Steggall, M., Marchi, N., Brassard, P., Lucas, S. J. E., Cotter, J. D., Roig, M., Ainslie, P. N., Wisloff, U., & Bailey, D. M. (2020). HIITing the brain with exercise: mechanisms, consequences and practical recommendations. The Journal of Physiology, 598(13), 2513-2530. https://doi.org/10.1113/JP275021
    Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: A review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7-23. https://doi.org/10.1007/s00125-016-4106-1
    Chacko, S. C., Quinzi, F., De Fano, A., Bianco, V., Mussini, E., Berchicci, M., Perri, R. L., & Di Russo, F. (2020). A single bout of vigorous-intensity aerobic exercise affects reactive, but not proactive cognitive brain functions. International Journal of Psychophysiology, 147, 233-243. https://doi.org/10.1016/j.ijpsycho.2019.12.003
    Chang, Y.-K., Chi, L., Etnier, J. L., Wang, C.-C., Chu, C.-H., & Zhou, C. (2014). Effect of acute aerobic exercise on cognitive performance: Role of cardiovascular fitness. Psychology of Sport and Exercise, 15(5), 464-470.
    Chang, Y.-K., Chu, C.-H., Wang, C.-C., Wang, Y.-C., Song, T.-F., Tsai, C.-L., & Etnier, J. L. (2015). Dose–response relation between exercise duration and cognition. Medicine & Science in Sports & Exercise, 47(1), 159-165.
    Chang, Y.-K., Karageorghis, C. I., Wang, C.-C., Li, R.-H., Chen, F.-T., Fang, R.-Y., & Hung, T.-M. (2022). Effects of exercise intensity and duration at a predetermined exercise volume on executive function among Apolipoprotein E (APOE)-ɛ4 carriers. Current Psychology, 1-12.
    Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300.
    Chang, Y. K., Huang, C. J., Chen, K. F., & Hung, T. M. (2013). Physical activity and working memory in healthy older adults: An ERP study. Psychophysiology, 50(11), 1174-1182. https://doi.org/10.1111/psyp.12089
    Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/10.1016/j.brainres.2012.02.068
    Chang, Y. K., Tsai, C. L., Huang, C. C., Wang, C. C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? Journal of Science and Medicine in Sport, 17(1), 51-55. https://doi.org/10.1016/j.jsams.2013.02.007
    Charalambous, C. C., Helm, E. E., Lau, K. A., Morton, S. M., & Reisman, D. S. (2018). The feasibility of an acute high-intensity exercise bout to promote locomotor learning after stroke. Topics in Stroke Rehabilitation, 25(2), 83-89. https://doi.org/10.1080/10749357.2017.1399527
    Chmura, J., Nazar, K., & Kaciuba-Uscilko, H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. International Journal of Sports Medicine, 15(4), 172-176. https://doi.org/10.1055/s-2007-1021042
    Chouiter, L., Dieguez, S., Annoni, J. M., & Spierer, L. (2014). High and low stimulus-driven conflict engage segregated brain networks, not quantitatively different resources. Brain Topography, 27(2), 279-292. https://doi.org/10.1007/s10548-013-0303-0
    Chu, C.-H., Alderman, B. L., Wei, G.-X., & Chang, Y.-K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science, 4(1), 73-81.
    Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute exercise and neurocognitive development in preadolescents and young adults: An ERP study. Neural Plasticity, 2017, 2631909. https://doi.org/10.1155/2017/2631909
    Chun, M. Y. (2012). Validity and reliability of korean version of international physical activity questionnaire short form in the elderly. Korean Journal of Family Medicine, 33(3), 144-151. https://doi.org/10.4082/kjfm.2012.33.3.144
    Clark, L. R., Schiehser, D. M., Weissberger, G. H., Salmon, D. P., Delis, D. C., & Bondi, M. W. (2012). Specific measures of executive function predict cognitive decline in older adults. Journal of the International Neuropsychological Society, 18(1), 118-127. https://doi.org/10.1017/S1355617711001524
    Coco, M., Caggia, S., Musumeci, G., Perciavalle, V., Graziano, A. C., Pannuzzo, G., & Cardile, V. (2013). Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. Journal of Neuroscience Research, 91(2), 313-320. https://doi.org/10.1002/jnr.23154
    Coetsee, C., & Terblanche, E. (2017a). Cerebral oxygenation during cortical activation: The differential influence of three exercise training modalities. A randomized controlled trial. European Journal of Applied Physiology, 117(8), 1617-1627. https://doi.org/10.1007/s00421-017-3651-8
    Coetsee, C., & Terblanche, E. (2017b). The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. European Review of Aging and Physical Activity, 14(1), 13. https://doi.org/10.1186/s11556-017-0183-5
    Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33(1), 107-112.
    Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125-130. https://doi.org/10.1111/1467-9280.t01-1-01430
    Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464-472. https://doi.org/10.1016/j.tins.2007.06.011
    Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8), 1381-1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
    Currie, K. D., Bailey, K. J., Jung, M. E., McKelvie, R. S., & MacDonald, M. J. (2015). Effects of resistance training combined with moderate-intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. Journal of Science and Medicine in Sport, 18(6), 637-642. https://doi.org/10.1016/j.jsams.2014.09.013
    de Asteasu, M. L. S., Martinez-Velilla, N., Zambom-Ferraresi, F., Casas-Herrero, A., & Izquierdo, M. (2017). Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials. Ageing Research Reviews, 37, 117-134.
    Dietrich, A., & Audiffren, M. (2011). The reticular-activating hypofrontality (RAH) model of acute exercise. Neuroscience & Biobehavioral Reviews, 35(6), 1305-1325. https://doi.org/10.1016/j.neubiorev.2011.02.001
    Donchin, E. (1981). Presidential address, 1980. Surprise!...Surprise? Psychophysiology, 18(5), 493-513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
    Drigny, J., Gremeaux, V., Dupuy, O., Gayda, M., Bherer, L., Juneau, M., & Nigam, A. (2014). Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: A pilot study. Journal of Rehabilitation Medicine, 46(10), 1050-1054. https://doi.org/10.2340/16501977-1905
    Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53-64.
    Drollette, E. S., Shishido, T., Pontifex, M. B., & Hillman, C. H. (2012). Maintenance of cognitive control during and after walking in preadolescent children. Medicine & Science in Sports & Exercise, 44(10), 2017-2024. https://doi.org/10.1249/MSS.0b013e318258bcd5
    Ekkekakis, P., Parfitt, G., & Petruzzello, S. J. (2011). The pleasure and displeasure people feel when they exercise at different intensities: Decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Medicine, 41, 641-671.
    El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., El-Ghandour, R., Nasrallah, P., Bilen, M., & Ibrahim, P. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). Journal of Neuroscience, 39(13), 2369-2382.
    Enette, L., Vogel, T., Fanon, J. L., & Lang, P. O. (2017). Effect of interval and continuous aerobic training on basal serum and plasma Brain-derived neurotrophic factor values in seniors: A systematic review of intervention studies. Rejuvenation Research, 20(6), 473-483. https://doi.org/10.1089/rej.2016.1886
    Eppinger, B., Kray, J., Mecklinger, A., & John, O. (2007). Age differences in task switching and response monitoring: Evidence from ERPs. Biological Psychology, 75(1), 52-67. https://doi.org/10.1016/j.biopsycho.2006.12.001
    Erickson, K. I., Gildengers, A. G., & Butters, M. A. (2022). Physical activity and brain plasticity in late adulthood. Dialogues in Clinical Neuroscience.
    Erickson, K. I., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 22-24. https://doi.org/10.1136/bjsm.2008.052498
    Falck, R. S., Davis, J. C., & Liu-Ambrose, T. (2017). What is the association between sedentary behaviour and cognitive function? A systematic review. British Journal of Sports Medicine, 51(10), 800-811.
    Fearnbach, S., Silvert, L., Pereira, B., Boirie, Y., Duclos, M., Keller, K., & Thivel, D. (2017). Reduced neural responses to food cues might contribute to the anorexigenic effect of acute exercise observed in obese but not lean adolescents. Nutrition Research, 44, 76-84.
    Fiorelli, C. M., Ciolac, E. G., Simieli, L., Silva, F. A., Fernandes, B., Christofoletti, G., & Barbieri, F. A. (2019). Differential acute effect of high-intensity interval or continuous moderate exercise on cognition in individuals with parkinson's disease. Journal of Physical Activity and Health, 16(2), 157-164. https://doi.org/10.1123/jpah.2018-0189
    Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B., & Walhovd, K. B. (2017). The disconnected brain and executive function decline in aging. Cerebral Cortex, 27(3), 2303-2317. https://doi.org/10.1093/cercor/bhw082
    Furqatovich, U. S. (2022). Cognitive impairment in heart failure. International Journal of Philosophical Studies and Social Sciences, 2(2), 167-171.
    Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6, 130. https://doi.org/10.3389/fnhum.2012.00130
    Gajewski, P. D., & Falkenstein, M. (2015). Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain and Cognition, 98, 87-101.
    Gajewski, P. D., Falkenstein, M., Thönes, S., & Wascher, E. (2020). Stroop task performance across the lifespan: High cognitive reserve in older age is associated with enhanced proactive and reactive interference control. NeuroImage, 207, 116430.
    Gellish, R. L., Goslin, B. R., Olson, R. E., McDONALD, A., Russi, G. D., & Moudgil, V. K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Medicine and Science in Sports and Exercise, 39(5), 822-829.
    Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084. https://doi.org/10.1113/jphysiol.2011.224725
    Gillen, J. B., Martin, B. J., MacInnis, M. J., Skelly, L. E., Tarnopolsky, M. A., & Gibala, M. J. (2016). Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLOS ONE, 11(4), e0154075. https://doi.org/10.1371/journal.pone.0154075
    Glisky, E. L., Alexander, G. E., Hou, M., Kawa, K., Woolverton, C. B., Zigman, E. K., Nguyen, L. A., Haws, K., Figueredo, A. J., & Ryan, L. (2021). Differences between young and older adults in unity and diversity of executive functions. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 28(6), 829-854. https://doi.org/10.1080/13825585.2020.1830936
    Goenarjo, R., Bosquet, L., Berryman, N., Metier, V., Perrochon, A., Fraser, S. A., & Dupuy, O. (2020). Cerebral oxygenation reserve: The relationship between physical activity level and the cognitive load during a stroop task in healthy young males. International Journal of Environmental Research and Public Health, 17(4), 1406.
    Gottesman, R. F., Schneider, A. L., Zhou, Y., Coresh, J., Green, E., Gupta, N., Knopman, D. S., Mintz, A., Rahmim, A., & Sharrett, A. R. (2017). Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA, 317(14), 1443-1450.
    Gregory, S. M., Spiering, B. A., Alemany, J. A., Tuckow, A. P., Rarick, K. R., Staab, J. S., Hatfield, D. L., Kraemer, W. J., Maresh, C. M., & Nindl, B. C. (2013). Exercise-induced insulin-like growth factor I system concentrations after training in women. Med Science Sports Exercise, 45(3), 420-428. https://doi.org/10.1249/MSS.0b013e3182750bd4
    Grieve, S. M., Williams, L. M., Paul, R. H., Clark, C. R., & Gordon, E. (2007). Cognitive aging, executive function, and fractional anisotropy: A diffusion tensor MR imaging study. American Journal of Neuroradiology, 28(2), 226-235. https://www.ncbi.nlm.nih.gov/pubmed/17296985
    Hamer, M., Muniz Terrera, G., & Demakakos, P. (2018). Physical activity and trajectories in cognitive function: English longitudinal study of ageing. Journal of Epidemiology and Community Health, 72(6), 477-483. https://doi.org/10.1136/jech-2017-210228
    Hamilton, G. F., & Rhodes, J. S. (2015). Exercise regulation of cognitive function and neuroplasticity in the healthy and diseased brain. Progress in Molecular Biology and Translational Science, 135, 381-406. https://doi.org/10.1016/bs.pmbts.2015.07.004
    Hanslmayr, S., Pastotter, B., Bauml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20(2), 215-225. https://doi.org/10.1162/jocn.2008.20020
    Hashimoto, T., Tsukamoto, H., Ando, S., & Ogoh, S. (2021). Effect of exercise on brain health: The potential role of lactate as a myokine. Metabolites, 11(12), 813.
    Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sorensen, H., Nielsen, H. B., Secher, N. H., & Ogoh, S. (2018). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. The FASEB Journal, 32(3), 1417-1427. https://doi.org/10.1096/fj.201700381RR
    Hawkes, T. D., Manselle, W., & Woollacott, M. H. (2014). Tai Chi and meditation-plus-exercise benefit neural substrates of executive function: A cross-sectional, controlled study. Journal of Complementary and Integrative Medicine, 11(4), 279-288. https://doi.org/10.1515/jcim-2013-0031
    Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., & de Geus, E. J. C. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25(6), 678-687. https://doi.org/10.1037/0278-6133.25.6.678
    Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054. https://doi.org/10.1016/j.neuroscience.2009.01.057
    Hogervorst, E., Riedel, W., Jeukendrup, A., & Jolles, J. (1996). Cognitive performance after strenuous physical exercise. Perceptual and Motor Skills, 83(2), 479-488. https://doi.org/10.2466/pms.1996.83.2.479
    Hsieh, S. S., Chueh, T. Y., Huang, C. J., Kao, S. C., Hillman, C. H., Chang, Y. K., & Hung, T. M. (2021). Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. Journal of Sports Sciences, 39(1), 10-22. https://doi.org/10.1080/02640414.2020.1803630
    Hsieh, S. S., Huang, C. J., Wu, C. T., Chang, Y. K., & Hung, T. M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during Stroop test in young and older adults. Journal of Clinical Medicine, 7(11), 391. https://doi.org/10.3390/jcm7110391
    Hugdahl, K., & Westerhausen, R. (2010). The two halves of the brain: Information processing in the cerebral hemispheres. MIT press.
    Jekauc, D. (2015). Enjoyment during exercise mediates the effects of an intervention on exercise adherence. Psychology, 6(01), 48.
    Ji, Q., Wang, Y., Guo, W., & Zhou, C. (2017). Contribution of underlying processes to improved visuospatial working memory associated with physical activity. PeerJ, 5, e3430. https://doi.org/10.7717/peerj.3430
    Jiménez-Maldonado, A., Rentería, I., García-Suárez, P. C., Moncada-Jiménez, J., & Freire-Royes, L. F. (2018). The impact of high-intensity interval training on brain derived neurotrophic factor in brain: A mini-review. Frontiers in Neuroscience, 12, 839.
    Juel, C., Klarskov, C., Nielsen, J. J., Krustrup, P., Mohr, M., & Bangsbo, J. (2004). Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 286(2), E245-251. https://doi.org/10.1152/ajpendo.00303.2003
    Jung, M. E., Bourne, J. E., & Little, J. P. (2014). Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate-and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. PLOS ONE, 9(12), e114541.
    Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
    Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The Journals of Gerontology: Series B, 64(3), 356-363. https://doi.org/10.1093/geronb/gbp030
    Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114-121. https://doi.org/10.1016/j.ijpsycho.2007.04.001
    Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
    Kao, S. C., Cadenas-Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425. https://doi.org/10.1111/psyp.13425
    Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345. https://doi.org/10.1111/psyp.12889
    Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology 28(4), 155-164. https://doi.org/10.2114/jpa2.28.155
    Kendzierski, D., & DeCarlo, K. J. (1991). Physical activity enjoyment scale: Two validation studies. Journal of Sport & Exercise Psychology, 13(1).
    Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., & Rushworth, M. F. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940-947. https://doi.org/10.1038/nn1724
    Kessler, H. S., Sisson, S. B., & Short, K. R. (2012). The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Medicine, 42(6), 489-509. https://doi.org/10.2165/11630910-000000000-00000
    Kramer, A. F., & Colcombe, S. (2018). Fitness Effects on the Cognitive Function of Older Adults: A meta-analytic study-revisited. Perspectives on Psychological Science, 13(2), 213-217. https://doi.org/10.1177/1745691617707316
    Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418-419. https://doi.org/10.1038/22682
    Kramer, A. F., & Strayer, D. L. (1988). Assessing the development of automatic processing: An application of dual-task and event-related brain potential methodologies. Biological Psychology, 26(1-3), 231-267. https://doi.org/10.1016/0301-0511(88)90022-1
    Kujach, S., Olek, R. A., Byun, K., Suwabe, K., Sitek, E. J., Ziemann, E., Laskowski, R., & Soya, H. (2020). Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: The possible involvement of lactate. Frontiers in Neuroscience, 13, 1455.
    Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.
    Kwak, S. E., Bae, J. H., Lee, J. H., Shin, H. E., Zhang, D., Cho, S. C., & Song, W. (2021). Effects of exercise-induced beta-hydroxybutyrate on muscle function and cognitive function. Physiological Reports, 9(3), e14497. https://doi.org/10.14814/phy2.14497
    Lambrick, D., Stoner, L., Grigg, R., & Faulkner, J. (2016). Effects of continuous and intermittent exercise on executive function in children aged 8-10 years. Psychophysiology, 53(9), 1335-1342. https://doi.org/10.1111/psyp.12688
    Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297.
    Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine, 32(1), 53-73. https://doi.org/10.2165/00007256-200232010-00003
    Lennox, K., Miller, R. K., & Martin, F. H. (2019). Habitual exercise affects inhibitory processing in young and middle age men and women. International Journal of Psychophysiology 146, 73-84. https://doi.org/10.1016/j.ijpsycho.2019.08.014
    Levy, G., Jacobs, D. M., Tang, M. X., Cote, L. J., Louis, E. D., Alfaro, B., Mejia, H., Stern, Y., & Marder, K. (2002). Memory and executive function impairment predict dementia in Parkinson's disease. Movement Disorders, 17(6), 1221-1226. https://doi.org/10.1002/mds.10280
    Lezi, E., Lu, J., Selfridge, J. E., Burns, J. M., & Swerdlow, R. H. (2013). Lactate administration reproduces specific brain and liver exercise-related changes. Journal of Neurochemistry, 127(1), 91.
    Li, B., Liang, F., Ding, X., Yan, Q., Zhao, Y., Zhang, X., Bai, Y., Huang, T., & Xu, B. (2019). Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behavioural Brain Research, 376, 112171.
    Li, L., Men, W. W., Chang, Y. K., Fan, M. X., Ji, L., & Wei, G. X. (2014). Acute aerobic exercise increases cortical activity during working memory: A functional MRI study in female college students. PLOS ONE, 9(6), e99222. https://doi.org/10.1371/journal.pone.0099222
    Li, X., He, Q., Zhao, N., Chen, X., Li, T., & Cheng, B. (2021). High intensity interval training ameliorates cognitive impairment in T2DM mice possibly by improving PI3K/Akt/mTOR Signaling-regulated autophagy in the hippocampus. Brain Research, 1773, 147703. https://doi.org/10.1016/j.brainres.2021.147703
    Li, Z., Daniel, S., Fujioka, K., & Umashanker, D. (2023). Obesity among asian american people in the United States: A review. Obesity, 31(2), 316-328.
    Lin, Y. Y., & Huang, C. S. (2016). Aging in Taiwan: Building a society for active aging and aging in place. Gerontologist, 56(2), 176-183. https://doi.org/10.1093/geront/gnv107
    Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701-711. https://doi.org/10.1016/s0028-3932(99)00106-2
    Lucas, S. J., Cotter, J. D., Brassard, P., & Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: Curiosity, cause, and consequence. Journal of Cerebral Blood Flow & Metabolism, 35(6), 902-911. https://doi.org/10.1038/jcbfm.2015.49
    Mager, R., Bullinger, A. H., Brand, S., Schmidlin, M., Scharli, H., Muller-Spahn, F., Stormer, R., & Falkenstein, M. (2007). Age-related changes in cognitive conflict processing: An event-related potential study. Neurobiology of Aging, 28(12), 1925-1935. https://doi.org/10.1016/j.neurobiolaging.2006.08.001
    Malinowski, P. (2013). Neural mechanisms of attentional control in mindfulness meditation. Frontiers in Neuroscience, 7, 8. https://doi.org/10.3389/fnins.2013.00008
    Manard, M., Francois, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioural Brain Research, 320, 504-516. https://doi.org/10.1016/j.bbr.2016.10.026
    Marquez, C. M. S., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of Applied Physiology.
    Martinez, N., Kilpatrick, M. W., Salomon, K., Jung, M. E., & Little, J. P. (2015). Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active adults. Journal of Sport and Exercise Psychology, 37(2), 138-149. https://doi.org/10.1123/jsep.2014-0212
    Martyr, A., & Clare, L. (2012). Executive function and activities of daily living in Alzheimer's disease: A correlational meta-analysis. Dementia and Geriatric Cognitive Disorders, 33(2-3), 189-203. https://doi.org/10.1159/000338233
    McGowan, A. L., Chandler, M. C., Brascamp, J. W., & Pontifex, M. B. (2019). Pupillometric indices of locus-coeruleus activation are not modulated following single bouts of exercise. International Journal of Psychophysiology, 140, 41-52. https://doi.org/10.1016/j.ijpsycho.2019.04.004
    McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165, 291-299. https://doi.org/10.1016/j.physbeh.2016.08.011
    McMorris, T. (2021). The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. International Journal of Psychophysiology, 170, 75-88. https://doi.org/10.1016/j.ijpsycho.2021.10.005
    McMorris, T., & Hale, B. J. (2015). Is there an acute exercise-induced physiological/biochemical threshold which triggers increased speed of cognitive functioning? A meta-analytic investigation. Journal of Sport and Health Science, 4(1), 4-13.
    McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3-4), 421-428. https://doi.org/10.1016/j.physbeh.2010.12.007
    McMorris, T., Turner, A., Hale, B. J., & Sproule, J. (2016). Beyond the catecholamines hypothesis for an acute exercise–cognition interaction: A neurochemical perspective. American Psychological Association.
    McNeely, H. E., West, R., Christensen, B. K., & Alain, C. (2003). Neurophysiological evidence for disturbances of conflict processing in patients with schizophrenia. Journal of Abnormal Psychology, 112(4), 679-688. https://doi.org/10.1037/0021-843X.112.4.679
    Medicine, A. C. o. S. (2013). ACSM's guidelines for exercise testing and prescription. Lippincott williams & wilkins.
    Mejias-Pena, Y., Rodriguez-Miguelez, P., Fernandez-Gonzalo, R., Martinez-Florez, S., Almar, M., de Paz, J. A., Cuevas, M. J., & Gonzalez-Gallego, J. (2016). Effects of aerobic training on markers of autophagy in the elderly. Age (Dordrecht, Netherlands), 38(2), 33. https://doi.org/10.1007/s11357-016-9897-y
    Mekari, S., Earle, M., Martins, R., Drisdelle, S., Killen, M., Bouffard-Levasseur, V., & Dupuy, O. (2020). Effect of high intensity interval training compared to continuous training on cognitive performance in young healthy adults: A pilot study. Brain Science, 10(2), 81. https://doi.org/10.3390/brainsci10020081
    Mekari, S., Neyedli, H. F., Fraser, S., O'Brien, M. W., Martins, R., Evans, K., Earle, M., Aucoin, R., Chiekwe, J., Hollohan, Q., Kimmerly, D. S., & Dupuy, O. (2020). High-intensity interval training improves cognitive flexibility in older adults. Brain Science, 10(11), 796. https://doi.org/10.3390/brainsci10110796
    Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the stroop task. Brain and Cognition, 49(3), 277-296. https://doi.org/10.1006/brcg.2001.1501
    Miller, M. W., Bacelar, M. F., Feiss, R. S., Daou, M., Alderman, B. L., & Ekkekakis, P. (2020). P3b as an electroencephalographic index of automatic associations of exercise-related images. International Journal of Psychophysiology, 158, 114-122.
    Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8-14. https://doi.org/10.1177/0963721411429458
    Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
    Moore, A., Gruber, T., Derose, J., & Malinowski, P. (2012). Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control. Frontiers in Human Neuroscience, 6, 18. https://doi.org/10.3389/fnhum.2012.00018
    Moriarty, T., Bourbeau, K., Bellovary, B., & Zuhl, M. N. (2019). Exercise intensity influences prefrontal cortex oxygenation during cognitive testing. Behavioral Sciences, 9(8), 83. https://doi.org/10.3390/bs9080083
    Morland, C., Andersson, K. A., Haugen, O. P., Hadzic, A., Kleppa, L., Gille, A., Rinholm, J. E., Palibrk, V., Diget, E. H., Kennedy, L. H., Stolen, T., Hennestad, E., Moldestad, O., Cai, Y., Puchades, M., Offermanns, S., Vervaeke, K., Bjoras, M., Wisloff, U., . . . Bergersen, L. H. (2017). Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 8(1), 15557. https://doi.org/10.1038/ncomms15557
    Nelson, M. C., Neumark-Stzainer, D., Hannan, P. J., Sirard, J. R., & Story, M. (2006). Longitudinal and secular trends in physical activity and sedentary behavior during adolescence. Pediatrics, 118(6), e1627-1634. https://doi.org/10.1542/peds.2006-0926
    Newcomer, J. W., & Krystal, J. H. (2001). NMDA receptor regulation of memory and behavior in humans. Hippocampus, 11(5), 529-542. https://doi.org/10.1002/hipo.1069
    O'Leary, K. C., Pontifex, M. B., Scudder, M. R., Brown, M. L., & Hillman, C. H. (2011). The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology 122(8), 1518-1525. https://doi.org/10.1016/j.clinph.2011.01.049
    Oberste, M., Schaffrath, N., Schmidt, K., Bloch, W., Jager, E., Steindorf, K., Hartig, P., Joisten, N., & Zimmer, P. (2018). Protocol for the "Chemobrain in Motion - study" (CIM - study): A randomized placebo-controlled trial of the impact of a high-intensity interval endurance training on cancer related cognitive impairments in women with breast cancer receiving first-line chemotherapy. BMC Cancer, 18(1), 1071. https://doi.org/10.1186/s12885-018-4992-3
    Oliveira, B. R., Slama, F. A., Deslandes, A. C., Furtado, E. S., & Santos, T. M. (2013). Continuous and high-intensity interval training: Which promotes higher pleasure? PLOS ONE, 8(11), e79965.
    Oliveira, B. R. R., Santos, T. M., Kilpatrick, M., Pires, F. O., & Deslandes, A. C. (2018). Affective and enjoyment responses in high intensity interval training and continuous training: A systematic review and meta-analysis. PLOS ONE, 13(6), e0197124. https://doi.org/10.1371/journal.pone.0197124
    Olney, N., Wertz, T., LaPorta, Z., Mora, A., Serbas, J., & Astorino, T. A. (2018). Comparison of acute physiological and psychological responses between moderate-intensity continuous exercise and three regimes of high-intensity interval training. The Journal of Strength & Conditioning Research, 32(8), 2130-2138.
    Pachana, N. A., Thompson, L. W., Marcopulos, B. A., & Yoash-Gantz, R. (2004). California older adult Stroop test (COAST) development of a Stroop test adapted for geriatric populations. Clinical Gerontologist, 27(3), 3-22.
    Palmer, B., Nasman, V. T., & Wilson, G. F. (1994). Task decision difficulty: Effects on ERPs in a same-different letter classification task. Biological Psychology, 38(2-3), 199-214. https://doi.org/10.1016/0301-0511(94)90039-6
    Parra, J., Cadefau, J. A., Rodas, G., Amigo, N., & Cusso, R. (2000). The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiologica 169(2), 157-165. https://doi.org/10.1046/j.1365-201x.2000.00730.x
    Perissiou, M., Bailey, T. G., Windsor, M., Nam, M. C. Y., Greaves, K., Leicht, A. S., Golledge, J., & Askew, C. D. (2018). Effects of exercise intensity and cardiorespiratory fitness on the acute response of arterial stiffness to exercise in older adults. European Journal of Applied Physiology, 118(8), 1673-1688. https://doi.org/10.1007/s00421-018-3900-5
    Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214-228. https://doi.org/10.1111/joim.12190
    Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
    Pontifex, M. B., Parks, A. C., Henning, D. A., & Kamijo, K. (2015). Single bouts of exercise selectively sustain attentional processes. Psychophysiology, 52(5), 618-625. https://doi.org/10.1111/psyp.12395
    Poon, E. T., Wongpipit, W., Ho, R. S., & Wong, S. H. (2021). Interval training versus moderate-intensity continuous training for cardiorespiratory fitness improvements in middle-aged and older adults: A systematic review and meta-analysis. Journal of Sports Sciences, 39(17), 1996-2005. https://doi.org/10.1080/02640414.2021.1912453
    Poon, L. W., Chodzko-Zajko, W. E., & Tomporowski, P. D. (2006). Active living, cognitive functioning, and aging. Human Kinetics.
    Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a metabolite and a regulator in the central nervous system. International Journal of Molecular Sciences, 17(9), 1450.
    Qiu, S., Cai, X., Sun, Z., Zugel, M., Steinacker, J. M., & Schumann, U. (2017). Aerobic interval training and cardiometabolic health in patients with type 2 diabetes: A meta-analysis. Frontiers in Physiology, 8, 957. https://doi.org/10.3389/fphys.2017.00957
    Raaijmakers, J. G., & Jakab, E. (2013). Rethinking inhibition theory: On the problematic status of the inhibition theory for forgetting. Journal of Memory and Language, 68(2), 98-122.
    Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062-1069. https://doi.org/10.1113/expphysiol.2009.048512
    Rasmussen, P., Wyss, M. T., & Lundby, C. (2011). Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. The FASEB Journal, 25(9), 2865-2873. https://doi.org/10.1096/fj.11-183822
    Reljic, D., Herrmann, H. J., Jakobs, B., Dieterich, W., Mougiakakos, D., Neurath, M. F., & Zopf, Y. (2022). Feasibility, safety, and preliminary efficacy of very low-volume interval training in advanced cancer patients. Medicine & Science in Sports & Exercise, 54(11), 1817-1830. https://doi.org/10.1249/MSS.0000000000002989
    Rey-Mermet, A., & Gade, M. (2018). Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychonomic Bulletin & Review, 25(5), 1695-1716.
    Riebe, D., Franklin, B. A., Thompson, P. D., Garber, C. E., Whitfield, G. P., Magal, M., & Pescatello, L. S. (2015). Updating ACSM's recommendations for exercise preparticipation health screening. Medicine & Science in Sports & Exercise, 47(11), 2473-2479. https://doi.org/10.1249/MSS.0000000000000664
    Robinson, M. M., Lowe, V. J., & Nair, K. S. (2018). Increased Brain Glucose Uptake After 12 Weeks of Aerobic High-Intensity Interval Training in Young and Older Adults. The Journal of Clinical Endocrinology & Metabolism, 103(1), 221-227. https://doi.org/10.1210/jc.2017-01571
    Rodriguez, A. L., Whitehurst, M., Fico, B. G., Dodge, K. M., Ferrandi, P. J., Pena, G., Adelman, A., & Huang, C. J. (2018). Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals. Experimental Biology and Medicine, 243(14), 1153-1160. https://doi.org/10.1177/1535370218812191
    Ruan, Q., Yu, Z., Chen, M., Bao, Z., Li, J., & He, W. (2015). Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Research Reviews, 20, 1-10. https://doi.org/10.1016/j.arr.2014.12.004
    Saliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older adults. PLOS ONE, 8(5), e63701.
    Santo, A. S., & Golding, L. A. (2003). Predicting maximum oxygen uptake from a modified 3-minute step test. Research Quarterly for Exercise and Sport, 74(1), 110-115. https://doi.org/10.1080/02701367.2003.10609070
    Scarpina, F., & Tagini, S. (2017). The stroop color and word test. Frontiers in Psychology, 8, 557. https://doi.org/10.3389/fpsyg.2017.00557
    Schurr, A. (2014). Cerebral glycolysis: A century of persistent misunderstanding and misconception. Frontiers in Neuroscience, 8, 360. https://doi.org/10.3389/fnins.2014.00360
    Shea, T. B., & Remington, R. (2018). Cognitive improvement in healthy older adults can parallel that of younger adults following lifestyle modification: Support for cognitive reserve during aging. Journal of Alzheimer's Disease Reports, 2(1), 201-205.
    Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Spielberg, J. M., Edgar, J. C., Sass, S. M., Stewart, J. L., Sutton, B. P., Banich, M. T., & Miller, G. A. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neurolmage, 50(3), 1292-1302. https://doi.org/10.1016/j.neuroimage.2009.12.061
    Sinai, M., Phillips, N. A., Chertkow, H., & Kabani, N. J. (2010). Task switching performance reveals heterogeneity amongst patients with mild cognitive impairment. Neuropsychology, 24(6), 757-774. https://doi.org/10.1037/a0020314
    Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Browndyke, J. N., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239-252. https://doi.org/10.1097/PSY.0b013e3181d14633
    Staub, B., Doignon-Camus, N., Bacon, E., & Bonnefond, A. (2014). The effects of aging on sustained attention ability: An ERP study. Psychology and Aging, 29(3), 684-695. https://doi.org/10.1037/a0037067
    Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.
    ten Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., Miran-Khan, K., & Liu-Ambrose, T. (2015). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: A 6-month randomised controlled trial. British Journal of Sports Medicine, 49(4), 248-254. https://doi.org/10.1136/bjsports-2013-093184
    Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Sciences, 17(4), 338-345. https://www.ncbi.nlm.nih.gov/pubmed/1330274
    Tian, Q., Erickson, K. I., Simonsick, E. M., Aizenstein, H. J., Glynn, N. W., Boudreau, R. M., Newman, A. B., Kritchevsky, S. B., Yaffe, K., & Harris, T. B. (2014). Physical activity predicts microstructural integrity in memory-related networks in very old adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(10), 1284-1290.
    Tsai, C. L., Pan, C. Y., Tseng, Y. T., Chen, F. C., Chang, Y. C., & Wang, T. C. (2021). Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults. Behavioural Brain Research, 413, 113472. https://doi.org/10.1016/j.bbr.2021.113472
    Tsai, C. L., Ukropec, J., Ukropcova, B., & Pai, M. C. (2018). An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage: Clinical, 17, 272-284. https://doi.org/10.1016/j.nicl.2017.10.028
    Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2016). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155, 224-230. https://doi.org/10.1016/j.physbeh.2015.12.021
    Vance, D. E., Webb, N. M., Marceaux, J. C., Viamonte, S. M., Foote, A. W., & Ball, K. K. (2008). Mental stimulation, neural plasticity, and aging: Directions for nursing research and practice. Journal of Neuroscience Nursing, 40(4), 241-249. https://doi.org/10.1097/01376517-200808000-00008
    Vega, S. R., Strüder, H. K., Wahrmann, B. V., Schmidt, A., Bloch, W., & Hollmann, W. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121(1), 59-65.
    Venckunas, T., Krusnauskas, R., Snieckus, A., Eimantas, N., Baranauskiene, N., Skurvydas, A., Brazaitis, M., & Kamandulis, S. (2019). Acute effects of very low-volume high-intensity interval training on muscular fatigue and serum testosterone level vary according to age and training status. European Journal of Applied Physiology, 119, 1725-1733.
    Waterhouse, B. D., Moises, H. C., & Woodward, D. J. (1998). Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Brain Research, 790(1-2), 33-44. https://doi.org/10.1016/s0006-8993(98)00117-6
    West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41(8), 1122-1135. https://doi.org/10.1016/s0028-3932(02)00297-x
    West, R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16(1), 103-113. https://doi.org/10.1162/089892904322755593
    West, R., & Alain, C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189. https://www.ncbi.nlm.nih.gov/pubmed/10731768
    Weston, K. S., Wisloff, U., & Coombes, J. S. (2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. British Journal of Sports Medicine, 48(16), 1227-1234. https://doi.org/10.1136/bjsports-2013-092576
    Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313(5790), 1093-1097. https://doi.org/10.1126/science.1128134
    Winding, K. M., Munch, G. W., Iepsen, U. W., Van Hall, G., Pedersen, B. K., & Mortensen, S. P. (2018). The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes, Obesity and Metabolism, 20(5), 1131-1139. https://doi.org/10.1111/dom.13198
    Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A., & Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597-609. https://doi.org/10.1016/j.nlm.2006.11.003
    Wollesen, B., Wildbredt, A., van Schooten, K. S., Lim, M. L., & Delbaere, K. (2020). The effects of cognitive-motor training interventions on executive functions in older people: A systematic review and meta-analysis. European Review of Aging and Physical Activity, 17(1), 9. https://doi.org/10.1186/s11556-020-00240-y
    Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., Lin, J. D., Greenberg, M. E., & Spiegelman, B. M. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18(5), 649-659.
    Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50(4), 1702-1710. https://doi.org/10.1016/j.neuroimage.2009.12.023
    Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningloh, G., Allaman, I., & Magistretti, P. J. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12228-12233. https://doi.org/10.1073/pnas.1322912111

    下載圖示
    QR CODE