研究生: |
張琇閔 Vivian Chang |
---|---|
論文名稱: |
電腦模擬學習環境對於二極體電路直覺學習成效之研究 The Effect of Simulation-based Learning Environment on Diode Circuits Intuitive Learning |
指導教授: |
張國恩
Chang, Kuo-En 宋曜廷 Sung, Yao-Ting |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 電腦輔助教學 、模擬 、直覺 、二極體電路 |
英文關鍵詞: | Computer assisted instruction, Simulation, Intuition, Diode Circuits |
論文種類: | 學術論文 |
相關次數: | 點閱:268 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為探討學習者在使用「電腦模擬學習環境」與「一般網頁學習環境」當作課後複習工具之後,其直覺學習成效上的差異,並驗證直覺認知特性與直覺學習成效之關連性,以及探討學習者使用「電腦模擬學習環境」及「一般網頁學習環境」學習後,對教學軟體之態度。
本研究的研究工具包含前後測試題及電腦模擬學習環境。實驗對象為北部都會區高級工業職業學校高二學生,選取兩個班級共44位學生為實驗對象,進行二週實驗。
研究結果發現,電腦模擬學習環境對於二極體電路單元其成效優於一般網頁學習環境,較能增進學習者直覺答題的反應以及效率,且經驗證其增進的直覺成效,符合直覺具「不證自明」以及「頑固性」的特性。
The purpose of this study was to investigate the intuitive learning effect of simulation-based learning environment. The second purpose of this study was to investigate the relation between effect and characteristics of intuition. The third purpose was to investigate learner’s attitude about the simulation-based learning environment. The learning environment designed includes providing learners with pre-test, simulation-based learning environment and hypertext learning environment, and post-test. Besides, it will be record testing time and correctness during pre-test and post-test.
The target audiences of this research are 44 sophomore students in department of industrial technology education.
The results showed that the intuition effect of simulation-based learning environment is better than hypertext learning environment. The intuitive learning effect accords with its characteristics: self-evident and perseverance.
The results also showed that learners have positive attitude toward the simulation-based environment.
葉玉珠(1998)。邁向二十一世紀的師資培訓—電腦模擬的應用。教育學術研討會。
林合彥(2004)。具有教學支援的網路化模擬學習環境。國立台灣師範大學資訊教育所碩士論文,未出版,台北市。
Alessi, S. M., & Trollip, S. R. (1982). An Instructional Design workshop for computer-based education. Chicago, Illinois: Bell & Howell.
Bruner, J.S. (1960). The process of education. New York: Vintage Books.
Broadbent, D. E., Fitzgerald, P., & Broadbend, M.H.P.(1986). Implicit-explicit distinction. British Journal of Psychology, 79, 251-272.
De Jong, T., & Ferguson-Hessler, MGM. (1996). Types and qualities of knowledge. Educational Psychologist, 31, 105-113.
Dowling, C. (1997). Simulations: New “worlds” for learning. Journal of Educational Multimedia and Hypermedia, 6(3/4), 321-338.
Ellington, H. I., Addinall, E., & Percival, R. (1981). Games and simulations in science education. London: Kogan Page.
Ellis, R. (2004). Down with Boring E-Learning! ASTD’s Online Magazine. All About E-Learning. Retrieved July, 2004, from
http://www.learningcircuits.org/2001/sep2001/karrer.html
Fensham, E., & Marton(1991). Intuitive in science and mathematics. Dordrecht, The Netherlands:Reidel.
Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht, The Netherlands:Reidel.
Gallagher, J. (1987). A summary of research in science education - 1985. Science Education, 71(3), 307-457.
Glaser, R., Schauble, L., Raghavan, K., & Zeitz, C. (1992). Scientific reasoning across different domains. In E. de Corte, M. Linn, H. Mandl & L. Verschaffel(Eds.), Computer-Based learning environments and problem solving(pp. 345-373). Berlin, Germany: Springer-Verlag.
Khoo, G. S., & Koh, T. S. (1998). Using visualization and simulation tools in tertiary science education. Journal of Computers in Mathematics and Science Teaching, 17(1), 5-20.
Lee, P.-L. H. (1997). Integrating concept mapping and metacognitive methods in hypermedia environment for learning science. Unpublished doctoral dissertation, West Lafayette: Purdue University.
Luo, W., Stravers, J. A., & Duffin, K. L. (2005). Lessons learned from using a web-based interactive landform simulation model (WILSIM) in a general education physical geography course. Journal of Geoscience Education, 53(5), 489-493.
Ronen, M., & Eliahu, M. (2000). Simulation — a bridge between theory and reality: the case of electric circuits. Journal of computer Assisted Learning, 16, 14-26.
Skinner, B. F. (1968). The Technology of teaching, N. Y.: Applet on Century-Crofts.
Swaak, J., Van Joolingen, R., & De Jong, T. (1996). Measuring Intuitive Knowledge in Science: The Development of The WHAT-IF Test. Studies in Educational Evaluation, 22(4), 341-362.
Swaak, J., Van Joolingen, R., & De Jong, T. (1998). Supporting simulation-Based Learning:The Effects of Model Progression and Assignments On Definitional and Intuitive Knowledge. Learning and Instruction, 8(3), 235-252.
Swaak, J., & De Jong, T. (2001). Discovery simulations and the assessment of intuitive knowledge. Journal of Computer Assisted Learning, 17, 284-294
Swaak, J., & De Jong, T. (2004). The effects of discovery learning and expository instruction on the acquisition of definitional and intuitive knowledge. Journal of Computer Assisted Learning, 20(4), p225
Thomas, R., & Hooper, E. (1990). Simulations: An opportunity we are missing. Journal of Research on Computing in Education, 23(4), 497-513.
Ton, J., Wouter R., & Van Joolingen, R. (1998). Scientific Discovery Learning With Computer Simulations of Conceptual Domains, Review of Educational Research, 68(2), 179-201.
Wagner, R. K., & Sternberg, R. J. (1985a). Pratical intelligence in real-world pursuits: The role of tacit knowledge. Journal of Personality and Social Psychology, 49(2), 436-458.
Wagner, R. K., & Sternberg, R. J. (1985b). Tacit knowledge and intelligence in the everyday world. In R.J. Sternberg, R.K. Wagner (Eds), The nature and origin of competence in the everyday world. Cambridge: Cambridge University Press.
Westcott, M. R. (1968). Towards a contemporary psychology of intuition. New York: Holt, Rinehart & Winston.