研究生: |
李亭儀 Lee, Ting-Yi |
---|---|
論文名稱: |
溴化銫鉛鈣鈦礦奈米晶體與還原氧化石墨烯複合材料進行高效率光催化二氧化碳還原反應之探討 CsPbBr3 Nanocrystals/Reduced Graphene Oxide Composite for Efficient Photocatalytic CO2 Reduction Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
口試委員: |
陳家俊
Chen, Chia-Chun 陳俊維 Chen, Chun-Wei 王迪彥 Wang, Di-Yan 郭聰榮 Kau, Tsung-Rong 李紹先 Li, Shao-Sian |
口試日期: | 2021/07/30 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 光催化二氧化碳還原 、溴化銫鉛鈣鈦礦奈米晶體 、輔助型催化劑 、還原氧化石墨烯 、複合材料 |
英文關鍵詞: | Photocatalytic reduction of carbon dioxide, Cesium bromide lead perovskite nanocrystals, Co-catalyst, Reduced graphene oxide, Composite |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 、 敘事分析 |
DOI URL: | http://doi.org/10.6345/NTNU202101028 |
論文種類: | 學術論文 |
相關次數: | 點閱:304 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
減少二氧化碳是目前全球暖化的首要目標,許多科學家嘗試使用光催化的方式將二氧化碳還原成碳氫能源,達到永續生活;尋找效果好與穩定的材料做二氧化碳光催化還原是重要的環節。鈣鈦礦有優異的光電性質,除了在太陽能電池與光電二極體…等展現優異的效果,近幾年,科學家將鈣鈦礦應用於二氧化碳還原,並研究出鈣鈦礦在催化方面的活性位點,根據使用不同的金屬,有許多不錯的結果,探討如何能讓產量增加也是一大重點。
本篇論文先探討以氣相-固相的反應條件,純CsPbBr3進行光催化二氧化碳還原以AM1.5G的LED仿太陽光進行6小時的照射,發現純的電子反應速率為20.664,為了達到更好的產率,本篇論文也探討將純CsPbBr3與不同的材料做異質結複合材料進行相同條件的光催化反應,探討異質結複合材料是否能有更突出的效果,其中分別使用了輔助型催化劑.能加強鈣鈦礦電洞傳輸與加強電子傳輸的材料。實驗得出,使用輔助型催化劑加上CsPbBr3可加強二氧化碳還原的效果,其中使用CsPbBr3/RGO的鈣鈦礦複合材料,有最高的電子反應效率361.04,相較於純CsPbBr3而言,多了17.47倍;使用CsPbBr3/SnS2的鈣鈦礦複合材料,其電子反應效率也高達120.59,與純CsPbBr3相比,將近多了4倍的產率。由以上的反應結果,根據不同材料的能隙位置,探討出能隙的位置會影響電子電洞的分離與轉換的效率,產生不同的加強效果。以上結論,不僅能總結如何增強二氧化碳的還原效果,更能夠使用於其他適合的鈣鈦礦材料去進行異質結結構的光催化二氧化碳還原。
Reducing CO2 is currently the primary goal of global warming. Many scientists tried to use photocatalysis to reduce CO2 into hydrocarbon energy to achieve sustainable life. Finding effective and stable materials for photocatalytic CO2 reduction is an important link. Perovskite has excellent photoelectric properties. In addition to exhibiting excellent effects in solar cells and photodiodes, etc., in recent years, scientists have applied perovskite to the reduction of CO2 and studied the catalytic activity of perovskite According to the use of different metals, there are many good results, and it is also a key point to explore how to increase production.
This paper first discusses the reaction conditions of gas-solid phase, pure CsPbBr3 for photocatalytic CO2 reduction, and AM1.5G LED imitating sunlight for 6 hours. It is found that the pure electron reaction rate is 20.664, in order to achieve better, this paper also discusses the photocatalytic reaction of pure CsPbBr3 with different materials as heterojunction composite materials under the same conditions, and discusses whether the heterojunction composite materials can have more prominent effects, and co-catalysts are used respectively. A material can not only strengthen the separation of perovskite electrics and electric holes but also strengthen the transfer
of electrons. Experiments have shown that the use of CsPbBr3 /co-catalysts composite can enhance the effect of carbon dioxide reduction. Among them, the perovskite composite material using CsPbBr3/RGO has the highest electronic reaction efficiency of 361.04, which is 17.47 times higher than that of pure CsPbBr3. The CsPbBr3/SnS2 perovskite composite has an electronic reaction efficiency as high as 120.59, which is nearly 4 times higher than that of pure CsPbBr3. From the above reaction results, according to the position of the energy gap of different materials, it is explored that the position of the energy gap will affect the efficiency of the separation and conversion of electron holes, resulting in different strengthening effects. The above conclusions can not only summarize how to enhance the reduction effect of CO2, but also can be used in other suitable perovskite materials to perform photocatalytic CO2 reduction of heterojunction structure.
1. Xia, T.; Long, R.; Gao, C.; Xiong, Y., Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction. Nanoscale 2019, 11 (23), 11064-11070.
2. White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y., Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical reviews 2015, 115 (23), 12888-12935.
3. Teh, Y. W.; Chee, M. K.; Kong, X. Y.; Yong, S.-T.; Chai, S.-P., An insight into perovskite-based photocatalysts for artificial photosynthesis. Sustainable Energy & Fuels 2020, 4 (3), 973-984.
4. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593-1596.
5. Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M. A.; Eickemeyer, F. T.; Kim, M., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592 (7854), 381-385.
6. Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537 (7620), 382-386.
7. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Semiconductor-based photocatalytic hydrogen generation. Chemical reviews 2010, 110 (11), 6503-6570.
8. Kamat, P. V., Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics. Accounts of chemical research 2017, 50 (3), 527-531.
9. Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J.; Masel, R. I., Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334 (6056), 643-644.
10. Jana, J.; Ngo, Y.-L. T.; Chung, J. S.; Hur, S. H., Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process. Journal of Electrochemical Science and Technology 2020, 11 (3), 220-237.
11. Lu, Q.; Jiao, F., Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439-456.
12. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano letters 2009, 9 (2), 731-737.
13. Di, J.; Xia, J.; Ji, M.; Xu, L.; Yin, S.; Chen, Z.; Li, H., Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process. Journal of Materials Chemistry A 2016, 4 (14), 5051-5061.
14. Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z., Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS applied materials & interfaces 2012, 4 (7), 3372-3377.
15. Liu, G.; Sun, C.; Yan, X.; Cheng, L.; Chen, Z.; Wang, X.; Wang, L.; Smith, S. C.; Lu, G. Q. M.; Cheng, H.-M., Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms. Journal of Materials Chemistry 2009, 19 (18), 2822-2829.
16. Moustakas, N. G.; Strunk, J., Photocatalytic CO2 Reduction on TiO2‐Based Materials under Controlled Reaction Conditions: Systematic Insights from a Literature Study. Chemistry–A European Journal 2018, 24 (49), 12739-12746.
17. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122.
18. Pu, Y.; Luo, Y.; Wei, X.; Sun, J.; Li, L.; Zou, W.; Dong, L., Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Applied Catalysis B: Environmental 2019, 254, 580-586.
19. Zhu, Q.; Sun, X.; Yang, D.; Ma, J.; Kang, X.; Zheng, L.; Zhang, J.; Wu, Z.; Han, B., Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature communications 2019, 10 (1), 1-11.
20. Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W., A hierarchical Z‐scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 2015, 11 (39), 5262-5271.
21. Huang, H.; Liu, K.; Chen, K.; Zhang, Y.; Zhang, Y.; Wang, S., Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. The Journal of Physical Chemistry C 2014, 118 (26), 14379-14387.
22. Huang, J.; Ding, K.; Hou, Y.; Wang, X.; Fu, X., Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water. ChemSusChem: Chemistry & Sustainability Energy & Materials 2008, 1 (12), 1011-1019.
23. Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y., A room‐temperature reactive‐template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angewandte Chemie 2010, 122 (36), 6544-6548.
24. Chai, Z.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D., Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. Journal of the American Chemical Society 2016, 138 (32), 10128-10131.
25. Tokudome, H.; Miyauchi, M., N-doped TiO2 nanotube with visible light activity. Chemistry Letters 2004, 33 (9), 1108-1109.
26. Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews 2019, 48 (21), 5310-5349.
27. Shao, H.; Ladi, N. H.; Pan, H.; Zhang, X. L.; Shen, Y.; Wang, M., 2D Materials as Electron Transport Layer for Low‐Temperature Solution‐Processed Perovskite Solar Cells. Solar RRL 2021, 5 (3), 2000566.
28. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society 2017, 139 (16), 5660-5663.
29. Jiang, Y.; Liao, J.-F.; Xu, Y.-F.; Chen, H.-Y.; Wang, X.-D.; Kuang, D.-B., Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. Journal of Materials Chemistry A 2019, 7 (22), 13762-13769.
30. Ahmad, H.; Kamarudin, S.; Minggu, L.; Kassim, M., Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews 2015, 43, 599-610.
31. Huang, Y.; Liu, J.; Deng, Y.; Qian, Y.; Jia, X.; Ma, M.; Yang, C.; Liu, K.; Wang, Z.; Qu, S., The application of perovskite materials in solar water splitting. Journal of Semiconductors 2020, 41 (1), 011701.
32. Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C., 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Letters 2019, 4 (7), 1687-1709.
33. Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W., Molecular catalysts for water oxidation. Chemical Reviews 2015, 115 (23), 12974-13005.
34. Yang, M. Q.; Gao, M.; Hong, M.; Ho, G. W., Visible‐to‐NIR photon harvesting: progressive engineering of catalysts for solar‐powered environmental purification and fuel production. Advanced Materials 2018, 30 (47), 1802894.
35. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38 (1), 253-278.
36. Shyamal, S.; Pradhan, N., Halide perovskite nanocrystal photocatalysts for CO2 reduction: successes and challenges. The Journal of Physical Chemistry Letters 2020, 11 (16), 6921-6934.
37. Tu, W.; Zhou, Y.; Zou, Z., Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state‐of‐the‐art accomplishment, challenges, and prospects. Advanced Materials 2014, 26 (27), 4607-4626.
38. Li, Z.; Feng, J.; Yan, S.; Zou, Z., Solar fuel production: Strategies and new opportunities with nanostructures. Nano Today 2015, 10 (4), 468-486.
39. Li, K.; An, X.; Park, K. H.; Khraisheh, M.; Tang, J., A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today 2014, 224, 3-12.
40. Chen, J.; Dong, C.; Idriss, H.; Mohammed, O. F.; Bakr, O. M., Metal halide perovskites for solar‐to‐chemical fuel conversion. Advanced Energy Materials 2020, 10 (13), 1902433.
41. Li, K.; Peng, B.; Peng, T., Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis 2016, 6 (11), 7485-7527.
42. Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K., Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Research 2016, 9 (11), 3478-3493.
43. Habisreutinger, S. N.; Schmidt‐Mende, L.; Stolarczyk, J. K., Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372-7408.
44. Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S.-m.; Diau, E. W.-G., Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas–solid interface. Journal of the American Chemical Society 2019, 141 (51), 20434-20442.
45. Chen, Z.; Hu, Y.; Wang, J.; Shen, Q.; Zhang, Y.; Ding, C.; Bai, Y.; Jiang, G.; Li, Z.; Gaponik, N., Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes. Chemistry of Materials 2020, 32 (4), 1517-1525.
46. Moreira, M. L.; Paris, E. C.; do Nascimento, G. S.; Longo, V. M.; Sambrano, J. R.; Mastelaro, V. R.; Bernardi, M. I.; Andrés, J.; Varela, J. A.; Longo, E., Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Materialia 2009, 57 (17), 5174-5185.
47. Zheng, Y.; Niu, T.; Ran, X.; Qiu, J.; Li, B.; Xia, Y.; Chen, Y.; Huang, W., Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. Journal of Materials Chemistry A 2019, 7 (23), 13860-13872.
48. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters 2015, 15 (6), 3692-3696.
49. Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials 2016, 28 (1), 284-292.
50. Tong, J.; Wu, J.; Shen, W.; Zhang, Y.; Liu, Y.; Zhang, T.; Nie, S.; Deng, Z., Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal–polymer composite films. ACS applied materials & interfaces 2019, 11 (9), 9317-9325.
51. Yusoff, A. R. b. M.; Nazeeruddin, M. K., Low‐dimensional perovskites: from synthesis to stability in perovskite solar cells. Advanced Energy Materials 2018, 8 (26), 1702073.
52. Ralaiarisoa, M.; Salzmann, I.; Zu, F. S.; Koch, N., Effect of water, oxygen, and air exposure on CH3NH3PbI3–xClx perovskite surface electronic properties. Advanced Electronic Materials 2018, 4 (12), 1800307.
53. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. J. N. l., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. 2015, 15 (6), 3692-3696.
54. Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G., High-efficiency perovskite solar cells. Chemical Reviews 2020, 120 (15), 7867-7918.
55. Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562 (7726), 245-248.
56. Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T.-W.; Scholes, G. D.; Rand, B. P., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics 2017, 11 (2), 108-115.
57. Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics 2016, 10 (11), 699-704.
58. Kim, H. P.; Kim, J.; Kim, B. S.; Kim, H. M.; Kim, J.; Yusoff, A. R. B. M.; Jang, J.; Nazeeruddin, M. K., High‐efficiency, blue, green, and near‐infrared light‐emitting diodes based on triple cation perovskite. Advanced Optical Materials 2017, 5 (7), 1600920.
59. Gao, L.-F.; Luo, W.-J.; Yao, Y.-F.; Zou, Z.-G. J. C. c., An all-inorganic lead halide perovskite-based photocathode for stable water reduction. 2018, 54 (81), 11459-11462.
60. Kanhere, P.; Chen, Z., A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19 (12), 19995-20022.
61. Khan, M.; Nadeem, M.; Idriss, H., Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surface science reports 2016, 71 (1), 1-31.
62. Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H., CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Advanced Functional Materials 2016, 26 (15), 2435-2445.
63. Wu, K.; Liang, G.; Shang, Q.; Ren, Y.; Kong, D.; Lian, T., Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. Journal of the American Chemical Society 2015, 137 (40), 12792-12795.
64. Sheng, J.; He, Y.; Li, J.; Yuan, C.; Huang, H.; Wang, S.; Sun, Y.; Wang, Z.; Dong, F., Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction. ACS nano 2020, 14 (10), 13103-13114.
65. Wang, X.-D.; Huang, Y.-H.; Liao, J.-F.; Jiang, Y.; Zhou, L.; Zhang, X.-Y.; Chen, H.-Y.; Kuang, D.-B., In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society 2019, 141 (34), 13434-13441.
66. Hua, X.; Ma, X.; Hu, J.; He, H.; Xu, G.; Huang, C.; Chen, X., Controlling electronic properties of MoS 2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen. Physical Chemistry Chemical Physics 2018, 20 (3), 1974-1983.
67. Bhargava, R.; Khan, S. In Structural, optical and dielectric properties of graphene oxide, AIP Conference Proceedings, AIP Publishing LLC: 2018; p 030011.
68. Li, J.; Liu, X.; Pan, L.; Qin, W.; Chen, T.; Sun, Z., MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. Rsc Advances 2014, 4 (19), 9647-9651.
69. Sehrawat, P.; Islam, S.; Mishra, P.; Ahmad, S., Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Scientific reports 2018, 8 (1), 1-13.
70. Osada, M.; Sasaki, T., Exfoliated oxide nanosheets: new solution to nanoelectronics. Journal of Materials Chemistry 2009, 19 (17), 2503-2511.
71. Chen, T. P.; Lin, C. W.; Li, S. S.; Tsai, Y. H.; Wen, C. Y.; Lin, W. J.; Hsiao, F. M.; Chiu, Y. P.; Tsukagoshi, K.; Osada, M., Self‐Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Advanced Energy Materials 2018, 8 (2), 1701722.
72. Ohisa, S.; Hikichi, T.; Pu, Y.-J.; Chiba, T.; Kido, J., Two-dimensional Ca2Nb3O10 perovskite nanosheets for electron injection layers in organic light-emitting devices. ACS applied materials & interfaces 2018, 10 (33), 27885-27893.
73. Osada, M.; Sasaki, T., Oxide nanosheets and their assemblies for new ceramic joining and smart processing. Transactions of JWRI 2010, 39 (2), 362-363.
74. Li, Z.; Chen, J.; Li, H.; Zhang, Q.; Chen, Z.; Zheng, X.; Fang, G.; Hao, Y., A facilely synthesized ‘spiro’hole-transporting material based on spiro [3.3] heptane-2, 6-dispirofluorene for efficient planar perovskite solar cells. RSC advances 2017, 7 (66), 41903-41908.
75. Wojtoniszak, M.; Chen, X.; Kalenczuk, R. J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P. K.; Borowiak-Palen, E., Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces 2012, 89, 79-85.
76. Kuo, T.-R.; Wang, D.-Y.; Chiu, Y.-C.; Yeh, Y.-C.; Chen, W.-T.; Chen, C.-H.; Chen, C.-W.; Chang, H.-C.; Hu, C.-C.; Chen, C.-C., Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry. Analytica chimica acta 2014, 809, 97-103.
77. áHummers Jr, W. In RE áOffeman, Preparation of graphitic oxide. J. áAm, Chem. Soc, 1958; pp 1339-1339.
78. Le, P. T.; Ten Elshof, J. E.; Koster, G., Shape Control of Ca2Nb3O10 Nanosheets: Paving the Way for Monolithic Integration of Functional Oxides with CMOS. ACS Applied Nano Materials 2020, 3 (9), 9487-9493.
79. Yuan, H.; Nguyen, M.; Hammer, T.; Koster, G.; Rijnders, G.; ten Elshof, J. E., Synthesis of KCa2Nb3O10 crystals with varying grain sizes and their nanosheet monolayer films as seed layers for piezoMEMS applications. ACS applied materials & interfaces 2015, 7 (49), 27473-27478.
80. Kang, Y.; Han, S. J. P. R. A., Intrinsic carrier mobility of cesium lead halide perovskites. 2018, 10 (4), 044013.
81. Haque, A.; Abdullah-Al Mamun, M.; Taufique, M.; Karnati, P.; Ghosh, K. J. I. T. o. S. M., Temperature dependent electrical transport properties of high carrier mobility reduced graphene oxide thin film devices. 2018, 31 (4), 535-544.
82. Shafique, A.; Samad, A.; Shin, Y.-H. J. P. C. C. P., Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study. 2017, 19 (31), 20677-20683.
83. Mir, S. H.; Yadav, V. K.; Singh, J. K. J. A. o., Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. 2020, 5 (24), 14203-14211.
84. Jiang, Y.; Liao, J.-F.; Chen, H.-Y.; Zhang, H.-H.; Li, J.-Y.; Wang, X.-D.; Kuang, D.-B., All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 2020, 6 (3), 766-780.
85. Kong, Z.-C.; Liao, J.-F.; Dong, Y.-J.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Core@ shell CsPbBr3@ zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Letters 2018, 3 (11), 2656-2662.
86. Xu, Y.-F.; Yang, M.-Z.; Chen, H.-Y.; Liao, J.-F.; Wang, X.-D.; Kuang, D.-B., Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet Schottky-junction photocatalyst. ACS Applied Energy Materials 2018, 1 (9), 5083-5089.
87. Shyamal, S.; Dutta, S. K.; Pradhan, N., Doping iron in CsPbBr3 perovskite nanocrystals for efficient and product selective CO2 reduction. The journal of physical chemistry letters 2019, 10 (24), 7965-7969.