研究生: |
張文瀚 Chang, Wen-Han |
---|---|
論文名稱: |
製程參數與攪拌棒凸銷形狀對純鈦摩擦攪拌銲接接合特性與抗蝕性影響之研究 Influence of process parameters and stir rod pin profile on the joining characteristics and corrosion resistance of pure titanium by friction stir welding |
指導教授: |
程金保
Cheng, Chin-Pao |
口試委員: |
王星豪
Wang, Hsing-Hao 黃智威 Huang, Chih-Wei 程金保 Cheng, Chin-Pao |
口試日期: | 2021/10/21 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 摩擦攪拌銲接 、純鈦 、攪拌棒凸銷形狀 、微觀組織 、機械性質 、抗腐蝕性 |
英文關鍵詞: | Friction stir welding, Pure titanium, Stirring rod pin shape, Microstructure, Mechanical property, Corrosion resistance |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101653 |
論文種類: | 學術論文 |
相關次數: | 點閱:177 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用摩擦攪拌銲接技術以對接的方式進行 Gr. 2 商業用純鈦的接 合,攪拌棒使用碳化鎢製成,攪拌棒傾斜角 3°、下壓深度 1.6 mm,探討使 用不同轉速、進給速度、攪拌棒凸銷形狀對於銲道機械性質影響。另外也探 討使用摩擦攪拌銲接與惰氣鎢極電弧銲接銲後試片在 3.5 wt %氯化鈉水溶液 中的抗腐蝕性比較。首先將接合之試片進行表面與斷面觀察、金相組織觀察、 微硬度試驗、拉伸試驗等來分析銲件的機械性質,最後進行電化學腐蝕試驗 來分析試片的抗腐蝕性。
實驗結果顯示使用加大錐形凸銷攪拌棒、轉速 400 rpm、進給速度 50 mm/min 時可以得到較佳的銲接性質,抗拉強度可達 310.63 MPa,為母材的 92.25 %。在攪拌棒凸銷的形狀上,使用圓柱形凸銷攪拌棒可以形成較大的 攪拌區,但容易在材料內部產生缺陷;使用圓錐形凸銷攪拌棒則可以擴大成 功銲接的範圍,但因攪拌區較小造成銲接強度不足。除此之外,純鈦經過摩 擦攪拌銲接後在攪拌區內都可以觀察到明顯晶粒細化的效果,也讓該區域的 硬度有所提升,可達到 175 HV 左右。熱影響區的晶粒尺寸則變化不大,但 經過銲接後該區域硬度則有些微降低。在抗腐蝕性方面,經過摩擦攪拌銲接 的試片在攪拌區內由於晶粒細化的作用,其抗腐蝕性都有明顯的提升,該區 域內的抗腐蝕性不僅優於母材,也優於使用惰氣鎢極電弧銲接方法接合之試 片。
In this study, friction stir welding was used to join Gr. 2 commercial pure titanium by means of butt joint. The stirring rod was made of tungsten carbide. The tilt angle of the stirring rod was 3° and the depression depth was 1.6 mm. The purpose of this study was to discuss the influence of using different rotation speeds, feed speeds, and the shapes of the pin of the stirring rod on the mechanical properties of the weld bead. In addition, the difference of corrosion resistance shown after friction stir welding and gas tungsten arc welding were in 3.5 wt % sodium chloride aqueous was also discussed. The experiment conducted surface and cross-section observation, tensile test, metallographic observation, microhardness test to analyze the mechanical properties, and finally ran an electrochemical corrosion resistance test to analyze the corrosion resistance.
Experimental results showed that the best welding properties could be obtained when using enlarged conical stirring rod pin, the speed was 400 rpm and the feed speed was 50 mm/min. The tensile strength could reach 310.63 MPa, which was 92.25 % of the base material. Regarding the shape of the pin of the stirring rod, the use of cylindrical pin stirring rod could form a larger stir zone, but it was likely to produce inner cavity defects. Furthermore, the use of conical pin stirring rod could expand the range of successful welding, however, the smaller stir zone caused insufficient welding strength. Besides, after pure titanium was in the process of friction stir welding, significant effect of grain refinement could be observed in the stir zone, and the hardness of this area had also been promoted to about 175 HV. The grain size of the heat-affected zone had not been greatly changed, but the hardness of the area slightly decreased after welding. In terms of corrosion resistance, due to the grain refinement of the friction stir welding test piece in the stir zone, its corrosion resistance had been significantly improved. The corrosion resistance in this area was not only better than the base material did, but also better than that of the specimen piece joined by gas tungsten arc welding process.
【1】 W.L. Masterton, C. N. Hurley, “Chemistry: Principles and Reactions 6th”, Cengage Learning, 18, 2008.
【2】 M. Yamada, “An overview on the development of titanium alloys for non- aerospace application in Japan”, Materials Science and Engineering A, 213, 8-15, 1996.
【3】 I. Inagaki, T. Takechi, Y. Shirai, N. Ariyasu, “Application and Features of Titanium for the Aerospace Industry”, Nippon Steel & Sumitomo Metal Technical Report, No. 106, July, 22-27, 2014.
【4】 V. Dhinakaran, S.V. Shriragav, A. Fathima Yasin Fahmidha, M. Ravichandran, “A review on the categorization of the welding process of pure titanium and its characterization”, Materials Today: Proceedings 27, 742-747, 2020.
【5】 Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, “Review of tools for friction stir welding and processing, Canadian Metallurgical Quartrly”, 51(3) , 240- 261, 2012.
【6】 W.L. Masterton, C.N. Hurley, "Chemistry: Principles and Reactions", 6th edition, Cengage Learning, 2008, January
【7】 洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,21(1),12- 22。
【8】 J.R.P. Jorge, V.A. Barão, J.A. Delben, L.P. Faverani, T.P. Queiroz, W.G. Assunc ̧ão, “Titanium in Dentistry: Historical Development, State of the Art and Future Perspectives”, The Journal of Indian Prosthodontic Society, June 2013.
【9】 馬濟民,賀金宇,龐克昌,莫畏,“鈦鑄錠和鍛造”,冶金工業出版社,2012。
【10】張克華,董是元,「鈦及鈦合金的銲接」,機械工人學習材料,1985。
【11】莫畏,鄧國珠,陸德禎,「鈦冶金」,冶金工業出版社,1979。
【12】J. Kim, E. Jin, S. P. Murugan, Y.D. Park, “Recent Advances in Friction-stir Welding Process and Microstructural Investigation of Friction Stir Welded Pure Titanium”, Dept. of Advanced Materials Engineering, Dong-Eui University, Busan, 47340, Korea, 2017
【13】顏秀崗,「高溫熱成長鈦氧化物膜防治鈦金屬氫脆之研究」,國立中興 大學材料工程學研究所,1996。
【14】W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple- Smith, C. J. Dawes, “Friction Welding,” The Welding Institute TWI (1991) Patent Application No. 91259788, Cambridge, 1991.
【15】R.S. Mishra, Z.Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering, R50, 1-78, 2005.
【16】N.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, W.H. Bingel, "Properties of friction-stir-welded 7075 T651 aluminum", Metallurgical and Materials Transactions A, Vol.29, 1995-1964, 1998.
【17】P. Cavaliere, E. Cerri, "Mechanical response of 2024-7075 aluminum alloys joined by Friction Stir Welding", Journal of Materials Science, Vol.40, No.14, 3669-3676, 2005.
【18】R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, "Hifi strain rate superplasticity in a friction stir processed 7075 Al alloy", Scripta Materialia, Vol.42, 163-168, 2000.
【19】P. Cavaliere, A. Squillace, "High temperature deformation of friction stir processed 7075 aluminium alloy", Materials Characterization, Vol.55m, 136-142, 2005.
【20】Z.Y. Ma, R.S. Mishra, M.W. Mahoney, "Superplastic deformation behavior of friction stir processed 7075Al alloy", Acta Materialia, Vol.50, 4419- 4430, 2002.
【21】張華,林三寶,吳林,馮吉才,欒國紅,「攪拌摩擦銲研究進展及前景 展望」,銲接學報,第 24 卷,第 3 期,2003 年 6 月。
【22】Y. Li, L.E. Murr, J.C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum”, Materials Science and Engineering, A271, 213-223, 1999.
【23】P.M. Mashinini, “Process window for friction stir welding of 3 mm Titanium (Ti-6Al-4V) ”, Nelson Mandela Metropolitan University, 2010.
【24】E.N. Hahn, M.A. Meyers, “Grain-size dependent mechanical behavior of nanocrystalline metals”, Mater Sci Eng, A 646, 101-134, 2015.
【25】R.S. Mishra, P.S. De, N. Kumar, “Friction stir welding and processing”, Cham : Springer International Publishing : Imprint: Springer, 2014 【26】D. Jacquin, G. Guillemot, “A review of microstructural changes occurring during FSW in aluminium alloys and their modelling”, Journal of Materials Processing Technology, Elsevier, 288, 116706, 2021.
【27】S. Kou, “Welding metallutgy”, Wiley-Interscience, 370-371, 2003. 【28】Z.Y. Ma, R.S. Mishra, M.W. Mahoney, “Superplastic deformation behaviour of friction stir processed 7075Al alloy”, Acta Materialia, 50, 4419-4430, 2002.
【29】S. Mohapatra, H. Sarangi, “Experimental investigation of tool probe shape and rotational speed on weld quality of friction stir welding of aluminium alloy”, Materials Today, Proceedings 41, 422-425, 2021.
【30】G. Buffa, J. Hua, R. Shivpuri, L. Fratini, “Design of the friction stir welding tool using the continuum based FEM model”, Materials Science and Engineering A, 419, 381-388, 2006.
【31】H. Fujii, L. Cui, M. Maeda, K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys”, Materials Science and Engineering A, 419, 25-31, 2006.
【32】K. Elangovan, V. Balasubbramanian, “Influences of tool pin profile and welding speed on the formation of friction ster processing zone in AA2219 aluminium alloy”, Journal of Materials Processing Technology, 200, 163-175, 2008.
【33】K. Elangovan, V. Balasubbramanian, “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy”, Materials Science and Engineering A, 459, 7-18, 2007.
【34】D. Ren, Y. Jiang, X. Hu, X. Zhang, X. Xiang, K. Huang, H. Ling, “Investigation of tensile and high cycle fatigue failure behavior on a TIG welded titanium alloy”, Intermetallics, 132, 107-115, 2021.
【35】R. Bendikiene, S. Baskutis, J. Baskutiene, A. Ciuplys, T. Kacinskas, “Comparative study of TIG welded commercially pure titanium”, Journal of Manufacturing Processes, 36, 155-163, 2018.
【36】A. Karpagaraj, N. Siva shanmugam, K. Sankaranarayanasamy, “Some studies on mechanical properties and microstructural char- acterization of automated TIG welding of thin commercially pure ti- tanium sheets”, Materials Science & Engineering A, 640, 180-189, 2015.
【37】W.K.C. Yung, B. Ralph, W.B. Lee, R. Fenn, “An investigation into welding parameters affecting the tensile properties oftitanium welds”, Journal ofMaterials Processing Technology, 63, 759-764, 1997.
【38】X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, “A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate”, Materials Science & Engineering A, 559, 14-21, 2013.
【39】A. Sunny Kumar, T.V. Hanumantha Rao, V.V.S. Kesava Rao, R.T. RamaKanth, “Optimizing pulsed current micro plasma arc welding parameters to maximize ultimate tensile strength of titanium (Ti-6Al-4V) alloy using Dragon fly algorithm”, Materials Today: Proceedings 27, 2086- 2090, 2020.
【40】R. Li, F. Zhang, T. Sun, B. Liu, S. Chen, Y. Tian, Investigation of strengthening mechanism of commercially pure titanium joints fabricated by autogenously laser beam welding and laser-MIG hybrid welding processes, The International Journal of Advanced Manufacturing Technology, 101, 377-389, 2019.
【41】L. Fratini, F. Micari, G. Buffa, V.F. Ruisi, “A new fixture for FSW processes of titanium alloys”, CIRP Annals - Manufacturing Technology, 59, 271-274, 2010.
【42】H. Liu, K. Nakata, N. Yamamoto, J. Liao, “Grain Orientation and Texture Evolution in Pure Titanium Lap Joint Produced by Friction Stir Welding”, Materials Transactions, Vol. 51, No. 11, 2063-2068, 2010.
【43】H. Liu, K. Nakata, N. Yamamoto, J. Liao, “Friction stir welding of pure titanium lap joint”, Science and Technology of Welding and Joining, vol.15, No.5, 428-432, 2010.
【44】W.J. Arbegast, “Friction Stir Joining Characteristic Defects”, Advanced Materials Processing Center, 2003.
【45】H. Fujii, Y. Sun, H. Kato, K. Nakata, “Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints”, Materials Science and Engineering A, 527, 3386-3391, 2010.
【46】K.D. Ralstona, D. Fabijanica, N. Birbilis, “Effect of grain size on corrosion of high purity aluminium”, Electrochimica Acta, 56(4) , 1729-1736, 2011. 【47】A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, "Corrosion resistance of ultra fine-grained Ti", Scripta Materialia, 51, 225-229, 2004.
【48】K. Takahashi, K. Mori, H. Takebe, "Application of Titanium and its Alloys for Automobile Parts", MATEC Web of Conferences 321, 2003, 2020.
【49】王思凱,「中碳鋼 S45C 感應熱處理製程之研究」,國立臺北科技大學, 材料及資源工程系研究所學位論文,2010。
【50】K. Herrmann, “Hardness Testing : Principles And Applications”, Asm International, USA, October, 2011.
【51】孔小東,楊明波,童康明,朱梅五,「銲接工藝對低合金海洋用鋼銲接 接頭耐蝕性的影響」,兵器材料科學與工程,第 30 卷,第五期,2007 【52】吳明諺,「熱壓延對鎂合金之腐蝕性質研究」,中華大學,機械工程學系碩士論文,2009。
【53】B. Denkena, A. Mücke, T. Schumacher, D. Langen, T. Grove, B. Bergmann, T. Hassel, "Ball end milling of titanium TIG weld material and the effect of SiC addition - process forces and shape deviations", Procedia Manufacturing, 19, 74-81, 2018.