簡易檢索 / 詳目顯示

研究生: 許憲銓
H.C.Hsu
論文名稱: Tb1-xEuxMnO3多鐵電及結構相性研究
The magnetic and dielectric phase diagram of Tb1-xEuxMnO3
指導教授: 徐永源
Hsu, Yung-Yuan
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 80
中文關鍵詞: 順電及傾斜反鐵磁螺旋式磁鐵電有序Rietveld方法多鐵電
英文關鍵詞: canted-antiferromagnetic paraelectric state, spiral-ordered magnetic, ferroelectric state, Rietveld method, multiferroic
論文種類: 學術論文
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在Tb1-xEuxMnO3的物理特性和磁電相圖中,我們反映了兼具順電及傾斜反鐵磁(Eu)到包含螺旋式磁鐵電有序的多鐵電(Tb)之間在低溫的相變。
    在本文中,Tb1-xEuxMnO3 (0 ≤ x ≤ 1, Eu-Tb) 的相圖和之前所報導的Eu1-xYxMnO3 (Eu-Y)和Tb1-xGdxMnO3 (Gd-Tb)的系統皆有鐵電性是經由Dzyalosinski-Moriya (DM) 交互作用發生在複雜電性轉換的極化方向邊界。而Tb1-xEuxMnO3的優勢是近似平均離子半徑<rR>包含(Gd-Tb)系統且避免GdMnO3的不確定相;另一方面,穩定且充分研究的TbMnO3在Eu-Tb的系統相較於YMnO3在不穩定的Eu-Y的系統更可提供確切的系統訊息。
    Rietveld方法分析說明了求得Mn-O2-Mn鍵角在ab平面隨著x的增加而變大。已觀察到反鐵磁磁有序的Neél溫度大約在44到52 K。介電係數在28 K左右的波峰也說明此溫度以下進入了鐵電相。此外,Tb1-xEuxMnO3 (0 ≤ x ≤ 0.5)的等溫磁滯曲線在所有多鐵電材料中顯示存有似迴圈的異常磁性。此外,為了研究聲子模式隨著不同的Eu濃度在正交多晶晶格Tb1-xEuxMnO3的變化,我們也做了有關拉曼方面的測量。

    The physical properties and electromagnetic phase diagram of Tb1-xEuxMnO3 (0 ≤ x ≤ 1) system is reported, which undergoes transitions from canted-antiferromagnetic paraelectric state (Eu-side) to spiral-ordered magnetic, ferroelectric state (Tb-side), also known as multiferroic state, at low temperature.
    The phase diagrams of Tb1-xEuxMnO3 (0 ≤ x ≤ 1, Eu-Tb) is similar to those reported for , Eu1-xYxMnO3 (Eu-Y) and Tb1-xGdxMnO3 (Gd-Tb) systems in the literatures, whose ferroelectricities are due to Dzyalosinski-Moriya (DM) interaction with complicated polarization re-orientation near the ferroelectric phase boundary. The advantage of the Tb1-xEuxMnO3 system is that the average <rR> can cover the Gd-Tb system and avoid the uncertain state of GdMnO3; on the other hand, the stable and well-studied end member TbMnO3 of Eu-Tb system can provide more reliable systematic information than the unstable orthorhombic YMnO3 in Eu-Y system.
    The Rietveld refinement analysis indicates that the ab-plain Mn-O2-Mn bond angle increases smoothly as x increases. The observed antiferromagnetic ordering temperature, TN, varies from 44 to 52 K. The dielectric constant ε’(x,T) having peaks around 28 K indicates system enters ferroelectric phase below these temperatures. In addition, the isothermal magnetic hysteresis of Tb1-xEuxMnO3 (0 ≤ x ≤ 0.5) showed anomalous meta-magnetism like loops in all multiferroic samples. In order to investigate the Eu content x dependence of the phonon modes we also employ room temperature Raman scattering on orthorhombic polycrystalline Tb1-xEuxMnO3 (0 ≤ x ≤ 1).

    中文摘要 I Abstract II Content III List of Figures IV List of Tables IX 致謝 X 1 Introduction to multiferroics 1 1.1 Electronic-magneto materials 1 1.2 The colossal magnetoresistive oxides (CMR) materials and multiferroics 3 1.3 The Dzyalosinski-Moriya interactions (DM) 4 2 Experimental Details 8 2.1 Bulk samples preparation 8 2.2 Powder x-ray diffraction and Rietveld refinement 11 2.3 Magnetization and magnetic susceptibility measurement 13 2.4 Impendence and dielectric measurement 16 2.5 Raman scattering 18 3 The Physical properties of Tb1-xEuxMnO3 19 3.1 Structural properties 19 3.2 Magnetic properties 32 3.3 Electric properties 48 3.4 Raman scattering spectra analysis 55 4 Conclusion 67 Reference 70 Appendix 73

    [1] W. Eerenstein, et al., Nature 442, 759 (2006).
    [2] Y. Tokura, Science 312 1481 (2006); J. Magn. Magn. Mater. 310 1145 (2007).
    [3] F. Jona and G. Shirane, Ferroelectric Crystals (Dover, New York, 1993).
    [4] H. Schmid, Ferroelectrics 162, 317–338 (1994).
    [5] N. A. Hill , J. Phys. Chem. B 104, 6694–6709 (2000).
    [6] M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Material (Oxford Univ. Press, Oxford, (2001).
    [7] Khomskii and D. I. Bull., Am. Phys. Soc. C 21.002 (2001).
    [8] T. Katsufuji, et al., Phys. Rev. B 64, 104419 (2001).
    [9] T. Kimura, et al., Phys. Rev. B 67, 180401 (2003).
    [10] G. A. Smolenskii and I. E. Chupis,Ferroelectromagnets. Usp. Fiz. Nauk 137, 415–448 (1982); Sov. Phys. Usp. 25, 475–493 (1982).
    [11] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda,V. Tsurkan, and A. Loidl, Nature (London) 434, 364 (2005). Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. B 72, 060103 (2005).
    [12] S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. Lett. 96, 157202 (2006).
    [13] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, and C. Broholm, Phys. Rev. Lett. 95, 087205 (2005).
    [14] T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature (London) 430, 514 (2004).
    [15] M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goitsev, and R. V. Pisarev, Nature (London) 419, 818 (2002).
    [16] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature (London) 429, 392 (2004).
    [17] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
    [18] A. P. Ramirez, J. Phys. Condens. Matter 9, 8171 (1997).
    [19] Zener, Phys. Rev. 82, 403 (1951).
    [20] A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
    [21] C. Şen, G. Alvarez and E. Dagotto, Phys. Rev. Lett. 98, 127202 (2007).
    [22] H. Katsura, N. Nagaosa and V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
    [23] Sergienko, I. A. & Dagotto, E., Phys. Rev. B 73, 094434 (2006).
    [24] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez and Y. Tokura, Phys. Rev. Lett. 92 257201 (2004).
    [25] T. Goto, Y. Yamasaki, H. Watanabe, T. Kimura and Y. Tokura, Phys. Rev. B 72 220403 (2005).
    [26] J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Yu. Ivanov, A. A. Mukhin, A. M. Balbashov and A. Loidl, Phys. Rev. B 75 035118 (2007).
    [27] Y. Yamasaki, S. Miyasaka, T. Goto, H. Sagayama, T. Arima and Y. Tokura, Phys. Rev. B 76 184418 (2007).
    [28] B. Dabrowski et al., J. Solid State Chem. 178, 629 (2005).
    [29] J. Rodrífuez-Carvajal, Physica B 192 55 (1993).
    [30] J. A. Alonso et al., Inorg. Chem. 39 23 (2000).
    [31] J. Blasco et al., Phys. Rev. B 62 5609-5618 (2000).
    [32] A. Pimenov et al., Nature Phys. 2, 97 (2006).
    [33] Broadband Dielectric Spectroscopy, edited by F. Kremer and A. Schönhals (Springer, Berlin, 2002).
    [34] M. N. Iliev, M. V. Abrashev, H. G. Lee, V. N. Popov, Y. Y. Sun, C. Thomsen, R. L. Meng, and C. W. Chu, Phys. Rev. B 57, 2872 (1998).
    [35] M. N. Iliev, B. Lorenz, A. P. Litvinchuk, Y.-Q. Wang, Y. Y. Sun, and C. W. Chu, J. Phys.: Condens. Matter 17, 3333 (2005).
    [36] M. V. Abrashev, J. Bäckström, L. Börjesson, V. N. Popov, R. A. Chakalov, N. Kolev, R. L. Meng, and M. N. Iliev, Phys. Rev. B 65, 184301 (2002).
    [37] L. Martín-Carrón, A. de Andrés, M. J. Martínez-Lope, M. T. Casais, and J. A. Alonso, Phys. Rev. B 66, 174303 (2002).
    [38] M. N. Iliev, M. V. Abrashev, J. Laverdière, S. Jandl, M. M. Gospodinov, Y.-Q. Wang, and Y.-Y. Sun, Phys. Rev. B 73, 064302 (2006).
    [39] M. N. Iliev, M. V. Abrashev, H. G. Lee, V. N. Popov, Y. Y. Sun, C. Thomsen, R. L. Meng, and C. W. Chu, Phys. Rev. B 57, 2872 (1998).
    [40] V. A. Amelitchev, B. Güttler, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, and A. Yu. Ganin, Phys. Rev. B 63, 104430 (2001).
    [41] I. S. Smirnova, Physica B 262, 247 (1999).
    [42] J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetský, S. Hoffmann-Eifert, A. V. Pronin, Y. Yuzyuk, B. P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorný, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanĕk, A. Almeida, M. R. Chaves, A. A. Volkov, M. Dressel, and R. Waser, Phys. Rev. B 64, 184111 (2001).

    下載圖示
    QR CODE