簡易檢索 / 詳目顯示

研究生: 黃祥瑜
Huang, Hsiang-Yu
論文名稱: 藉由重力場效校準器改進用於校正的不準度之誤差計算方法
Improvement of error estimation method for calibration uncertainty with gravity field calibrator
指導教授: 張嘉泓
Chang, Chia-Hung
王子敬
Wong, Tsz-King
口試委員: 王子敬
Wong, Tsz-King
張嘉泓
Chang, Chia-Hung
井上優貴
Inoue, Yuki
口試日期: 2021/06/22
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 138
英文關鍵詞: KAGRA, calibration, gravity field calibrator, photon calibrator, maximum likelihood, higher order harmonics, demodulation, gravitational wave
DOI URL: http://doi.org/10.6345/NTNU202101277
論文種類: 學術論文
相關次數: 點閱:96下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Calibration and detector characterization play important role in gravitational waves signal reconstruction from interferometer response. KAGRA, a newly gravitational wave detector in Japan, joined the third observation(O3), and also have joint observation with GEO600, called O3GK. In calibration, we use photon calibrator(PCAL) in KAGRA during the observation. PCAL push mirror by radiation pressure to characterize interferometer response. We plan to use gravity field calibrator(GCAL), a dynamic gravitational field generator in our calibration in near future. GCAL actuate the interferometer mirror by rotating multipole masses.
    In this thesis, we proposed maximum likelihood method to crosscheck the error estimation independently. We characterize the operation of PCAL used in KAGRA in O3GK by signal demodulation to verify the stability of PCAL. For GCAL, we estimate the systematic error of two component, radius and mass in GCAL geometry by Monte Carlo simulation. In the end of this thesis, we proposed a new method with combination of above two calibration instruments. By estimating of the ratio of higher order harmonics in GCAL to PCAL calibration signal in specific frequency, we can reduce the systematic error of GCAL and error of calibration measurement. We also derive new formula for estimation of time-dependent correction factor(TDCFs) with GCAL for future application. However, the KAGRA Collaboration does not yet have consensus views on the results presented in this thesis.

    1 Introduction 1 2 Gravitational Wave Science 3 2.1 Gravitational wave theory 3 2.1.1 Einstein Field Equation 3 2.1.1.1 Christoffel Symbol and Ricci Tensor 4 2.1.1.2 Trace-reversed of hμν 6 2.1.1.3 Gauge transformation 6 2.1.1.4 Lorentz gauge 7 2.1.2 Gravitational waves 7 2.2 Source of Gravitational waves 9 2.2.1 Compact Binary Coalescence(CBC) 9 2.2.1.1 Binary black hole merger 11 2.2.1.2 Binary neutron star merger 11 2.2.1.3 Neutron star-black hole merger 14 2.2.2 Continuous Waves(CW) 14 2.2.3 Burst 14 2.2.4 Stochastic gravitational waves 14 2.3 Event catalog and parameter estimation 15 2.4 Unsolved Problem 16 2.4.1 Mass Gap between NS and BH 16 2.4.2 Hubble tension problem 17 2.4.3 Test of Gravity 18 2.4.4 Second Peak of BNS 19 3 Gravitational Waves Detector 20 3.1 Gravitational Wave Interferometer 20 3.1.1 Michelson Interferometer 20 3.1.2 Fabry-Perot Michelson Interferometer 22 3.2 Kamioka Gravitational Waves Detector 23 3.2.1 Overview of KAGRA 23 3.2.2 Design and Current sensitivity 24 3.2.3 Global observation network 25 3.3 Other GW Detectors in the worldwide 26 3.3.1 LIGO 26 3.3.2 Virgo 28 3.3.3 GEO600 28 3.4 Future GW project 29 3.4.1 LIGO-India 29 3.4.2 Einstein Telescope 29 3.4.3 Cosmic Explorer 31 3.4.4 LISA 31 3.4.5 DECIGO 33 4 Calibration 35 4.1 Overview of Calibration 35 4.2 Calibration Instruments 36 4.2.1 Photon Calibrator 37 4.2.2 Gravity field Calibrator 38 4.3 DARM Model 38 4.4 Calibration measurement 39 4.5 Reconstruction pipeline 40 4.5.1 C00 40 4.5.2 C10 40 4.5.3 C20 41 4.6 Motivation of the thesis 41 5 Error estimation of transfer functions in sensing function 42 5.1 Error estimation by maximum likelihood method 42 5.2 Time-dependent factor analysis 64 5.3 Conclusion 68 6 PCAL signal demodulation 69 6.1 Principle 69 6.2 Data quality state vector 70 6.3 Result 71 6.4 Conclusion 83 7 Uncertainty estimation of GCAL geometry 85 7.1 Principle 85 7.2 Setup and Input parameter 86 7.3 Result 86 7.4 Conclusion 91 8 Development of GCAL Analysis 92 8.1 Higher order harmonics method 92 8.1.1 Principle 92 8.1.2 The case align the axis of the test mass 93 8.1.3 Input parameters 95 8.1.4 Result 96 8.1.5 The case off-axis of the test mass 99 8.1.6 Input parameters 102 8.1.7 Result 103 8.2 Time-dependent factor with GCAL 106 8.3 Conclusion 107 9 Discussion 108 10 Conclusion 112 11 Future work 113 11.1 Improvement of Higher order harmonics method 113 11.2 Astronomical Calibration 113 Bibliography 114 Appendix 126

    [1] Russell A. Hulse. “The discovery of the binary pulsar”. In: Rev. Mod. Phys. 66 (3 July 1994), pp. 699–710. doi: 10.1103/RevModPhys.66.699. url: https://link.aps.org/ doi/10.1103/RevModPhys.66.699.
    [2] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 061102. doi: 10.1103/PhysRevLett. 116.061102. url: https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.
    [3] B. P. Abbott et al. “Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A”. In: The Astrophysical Journal 848.2 (Oct. 2017), p. L13. issn: 2041-8213. doi: 10.3847/2041-8213/aa920c. url: http://dx. doi.org/10.3847/2041-8213/aa920c.
    [4] Stefano Valenti et al. “The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck”. In: The Astrophysical Journal 848.2 (Oct. 2017), p. L24. doi: 10.3847/2041-8213/aa8edf. url: https://doi.org/10.3847/2041-8213/ aa8edf.
    [5] Samar Safi-Harb et al. Chandra X-ray Observations of the Neutron Star Merger GW170817: Thermal X-Ray Emission From a Kilonova Remnant? 2018. arXiv: 1812.11320 [astro-ph.HE].
    [6] Daryl Haggard et al. “A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817”. In: The Astrophysical Journal 848.2 (Oct. 2017), p. L25. doi: 10.3847/ 2041-8213/aa8ede. url: https://doi.org/10.3847/2041-8213/aa8ede.
    [7] K. D. Alexander et al. “The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta”. In: The Astrophysical Journal 848.2 (Oct. 2017), p. L21. doi: 10.3847/2041-8213/aa905d. url: https://doi.org/ 10.3847/2041-8213/aa905d.
    [8] Iair Arcavi et al. “Optical emission from a kilonova following a gravitational-wave- detected neutron-star merger”. In: Nature 551.7678 (Nov. 2017), pp. 64–66. issn: 1476- 4687. doi: 10.1038/nature24291. url: https://www.nature.com/articles/ nature24291.
    [9] Dougal Dobie et al. “A Turnover in the Radio Light Curve of GW170817”. In: The Astrophysical Journal 858.2 (May 2018), p. L15. doi: 10.3847/2041-8213/aac105. url: https://doi.org/10.3847/2041-8213/aac105.
    [10] P. A. Evans et al. “Swift and NuSTAR observations of GW170817: Detection of a blue kilonova”. In: Science 358.6370 (2017), pp. 1565–1570. issn: 0036-8075. doi: 10.1126/ science.aap9580. eprint: https://science.sciencemag.org/content/358/6370/ 1565.full.pdf. url: https://science.sciencemag.org/content/358/6370/1565.
    [11] R. Abbott et al. “GW190521: A Binary Black Hole Merger with a Total Mass of
    150 M⊙ ”. In: Phys. Rev. Lett. 125 (10 Sept. 2020), p. 101102. doi: 10.1103/PhysRevLett. 125.101102. url: https://link.aps.org/doi/10.1103/PhysRevLett.125.101102.
    [12] R. Abbott et al. “Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521”. In: The Astrophysical Journal 900.1 (Sept. 2020), p. L13. issn: 2041-8213. doi: 10.3847/2041-8213/aba493. url: http://dx.doi.org/10.3847/ 2041-8213/aba493.
    [13] The LIGO Scientific Collaboration et al. Upper Limits on the Isotropic Gravitational- Wave Background from Advanced LIGO’s and Advanced Virgo’s Third Observing Run. 2021. arXiv: 2101.12130 [gr-qc].
    [14] The LIGO Scientific Collaboration et al. Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run. 2021. arXiv: 2101.12248 [gr-qc].
    [15] Christopher M. Hirata. Lecture VIII: Linearized gravity. Nov. 2012. url: http://www. tapir.caltech.edu/~chirata/ph236/lec08.pdf.
    [16] Gerard Auger and Eric Plagnol. An Overview of Gravitational Waves. WORLD SCIEN- TIFIC, 2017. doi: 10.1142/10082. eprint: https://www.worldscientific.com/doi/ pdf/10.1142/10082. url: https://www.worldscientific.com/doi/abs/10.1142/ 10082.
    [17] Michele Maggiore. Gravitational Waves: Volume 1: Theory and Experiments. Oxford: Oxford University Press, 2007, p. 572. isbn: 9780198570745. doi: 10.1093/acprof: oso/9780198570745.001.0001. url: https://doi.org/10.1093/acprof:oso/ 9780198570745.001.0001.
    [18] Andrzej Królak and Mandar Patil. “The First Detection of Gravitational Waves”. In: Universe 3.3 (2017). issn: 2218-1997. doi: 10.3390/universe3030059. url: https: //www.mdpi.com/2218-1997/3/3/59.
    [19] Francisco R. Villatoro. “Nonlinear Gravitational Waves and Solitons: Mathematical The- ory and Computational Methods”. In: Sept. 2018, pp. 207–240. isbn: 978-3-319-66765-2. doi: 10.1007/978-3-319-66766-9_7.
    [20] Patrick J. Sutton. A Rule of Thumb for the Detectability of Gravitational-Wave Bursts. 2013. arXiv: 1304.0210 [gr-qc].
    [21] Eric Chassande-Mottin et al. “Multimessenger astronomy with the Einstein Telescope”. In: General Relativity and Gravitation 43.2 (June 2010), pp. 437–464. issn: 1572-9532. doi: 10.1007/s10714-010-1019-z. url: http://dx.doi.org/10.1007/s10714-010- 1019-z.
    [22] E. T. Newman et al. “Metric of a Rotating, Charged Mass”. In: Journal of Mathematical Physics 6.6 (1965), pp. 918–919. doi: 10.1063/1.1704351. eprint: https://doi.org/ 10.1063/1.1704351. url: https://doi.org/10.1063/1.1704351.
    [23] J. M. Bardeen, B. Carter, and S. W. Hawking. “The four laws of black hole mechanics”. en. In: Communications in Mathematical Physics 31.2 (June 1973), pp. 161–170. issn: 1432-0916. doi: 10.1007/BF01645742. url: https://doi.org/10.1007/BF01645742.
    [24] S. W. Hawking. “Black hole explosions?” en. In: Nature 248.5443 (Mar. 1974), pp. 30–31. issn: 1476-4687. doi: 10.1038/248030a0. url: https://www.nature.com/articles/ 248030a0.
    [25] A. Eckart and R. Genzel. “Observations of stellar proper motions near the Galactic Centre”. en. In: Nature 383.6599 (Oct. 1996), pp. 415–417. issn: 1476-4687. doi: 10. 1038/383415a0. url: https://www.nature.com/articles/383415a0.
    [26] A. M. Ghez et al. “High Proper‐Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy”. In: The Astrophysical Journal 509.2 (Dec. 1998), pp. 678–686. issn: 1538-4357. doi: 10.1086/306528. url: http://dx.doi.org/10.1086/306528.
    [27] B. P. Abbott et al. “GW151226: Observation of Gravitational Waves from a 22-Solar- Mass Binary Black Hole Coalescence”. In: Phys. Rev. Lett. 116 (24 June 2016), p. 241103. doi: 10.1103/PhysRevLett.116.241103. url: https://link.aps.org/doi/10.1103/ PhysRevLett.116.241103.
    [28] B. P. Abbott et al. “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”. In: Phys. Rev. Lett. 118 (22 June 2017), p. 221101. doi: 10.1103/PhysRevLett.118.221101. url: https://link.aps.org/doi/10.1103/ PhysRevLett.118.221101.
    [29] B. P. Abbott et al. “GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence”. In: The Astrophysical Journal 851.2 (Dec. 2017), p. L35. doi: 10.3847/ 2041-8213/aa9f0c. url: https://doi.org/10.3847/2041-8213/aa9f0c.
    [30] B. P. Abbott et al. “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence”. In: Phys. Rev. Lett. 119 (14 Oct. 2017), p. 141101. doi: 10.1103/PhysRevLett.119.141101. url: https://link.aps.org/doi/10.1103/ PhysRevLett.119.141101.
    [31] R. Abbott et al. “GW190412: Observation of a binary-black-hole coalescence with asym- metric masses”. In: Phys. Rev. D 102 (4 Aug. 2020), p. 043015. doi: 10.1103/PhysRevD. 102.043015. url: https://link.aps.org/doi/10.1103/PhysRevD.102.043015.
    [32] Event Horizon Telescope Collaboration et al. “First M87 Event Horizon Telescope Re- sults. I. The Shadow of the Supermassive Black Hole”. In: The Astrophysical Journal Letters 875 (Apr. 2019), p. L1. issn: 0004-637X. doi: 10.3847/2041-8213/ab0ec7. url: http://adsabs.harvard.edu/abs/2019ApJ...875L...1E.
    [33] Alice Zocchi, Mark Gieles, and Vincent Hénault-Brunet. “The effect of stellar-mass black holes on the central kinematics of Cen: a cautionary tale for IMBH interpretations”. In: Monthly Notices of the Royal Astronomical Society 482.4 (June 2018), pp. 4713– 4725. issn: 0035-8711. doi: 10.1093/mnras/sty1508. eprint: https://academic. oup.com/mnras/article-pdf/482/4/4713/26778961/sty1508.pdf. url: https: //doi.org/10.1093/mnras/sty1508.
    [34] Christopher R. Mann et al. “A Multimass Velocity Dispersion Model of 47 Tucanae Indicates No Evidence for an Intermediate-mass Black Hole”. In: The Astrophysical Journal 875.1 (Apr. 2019), p. 1. doi: 10.3847/1538-4357/ab0e6d. url: https: //doi.org/10.3847/1538-4357/ab0e6d.
    [35] Eduardo Vitral and Gary A. Mamon. “Does NGC 6397 contain an intermediate-mass black hole or a more diffuse inner subcluster?” In: A&A 646 (2021). doi: 10.1051/0004- 6361/202039650. url: https://doi.org/10.1051/0004-6361/202039650.
    [36] Richard C. Tolman. “Static Solutions of Einstein’s Field Equations for Spheres of Fluid”. In: Phys. Rev. 55 (4 Feb. 1939), pp. 364–373. doi: 10.1103/PhysRev.55.364. url: https://link.aps.org/doi/10.1103/PhysRev.55.364.
    [37] J. R. Oppenheimer and G. M. Volkoff. “On Massive Neutron Cores”. In: Phys. Rev. 55 (4 Feb. 1939), pp. 374–381. doi: 10.1103/PhysRev.55.374. url: https://link.aps. org/doi/10.1103/PhysRev.55.374.
    [38] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”. In: Phys. Rev. Lett. 119 (16 Oct. 2017), p. 161101. doi: 10. 1103/PhysRevLett.119.161101. url: https://link.aps.org/doi/10.1103/ PhysRevLett.119.161101.
    [39] Masaru Shibata et al. “Modeling GW170817 based on numerical relativity and its im- plications”. In: Phys. Rev. D 96 (12 Dec. 2017), p. 123012. doi: 10.1103/PhysRevD.96. 123012. url: https://link.aps.org/doi/10.1103/PhysRevD.96.123012.
    [40] David Radice and Liang Dai. “Multimessenger parameter estimation of GW170817”. In: The European Physical Journal A 55.4 (Apr. 2019), p. 50. issn: 1434-601X. doi: 10.1140/epja/i2019-12716-4. url: https://doi.org/10.1140/epja/i2019- 12716-4 (visited on 02/11/2021).
    [41] Joshua A. Faber and Frederic A. Rasio. “Binary Neutron Star Mergers”. In: Living Reviews in Relativity 15.1 (July 2012). issn: 1433-8351. doi: 10.12942/lrr-2012-8. url: http://dx.doi.org/10.12942/lrr-2012-8.
    [42] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron Star Merger”. In: The Astrophysical Journal 848.2 (Oct. 2017), p. L12. issn: 2041-8213. doi: 10.3847/ 2041-8213/aa91c9. url: http://dx.doi.org/10.3847/2041-8213/aa91c9.
    [43] Masaru Shibata et al. “Constraint on the maximum mass of neutron stars using GW170817 event”. In: Phys. Rev. D 100 (2 July 2019), p. 023015. doi: 10.1103/PhysRevD.100. 023015. url: https://link.aps.org/doi/10.1103/PhysRevD.100.023015.
    [44] M. Linares, T. Shahbaz, and J. Casares. “Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215+5135”. In: The Astrophysical Journal 859.1 (May 2018), p. 54. issn: 1538-4357. doi: 10.3847/1538-4357/aabde6. url: http://dx.doi.org/10.3847/1538-4357/aabde6.
    [45] R. Abbott et al. “GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object”. In: The Astrophysical Journal 896.2 (June 2020), p. L44. doi: 10.3847/2041-8213/ab960f. url: https://doi.org/ 10.3847/2041-8213/ab960f.
    [46] Antonios Tsokaros, Milton Ruiz, and Stuart L. Shapiro. “GW190814: Spin and Equation of State of a Neutron Star Companion”. In: The Astrophysical Journal 905.1 (Dec. 2020), p. 48. issn: 1538-4357. doi: 10.3847/1538-4357/abc421. url: http://dx.doi.org/ 10.3847/1538-4357/abc421.
    [47] Hung Tan, Jacquelyn Noronha-Hostler, and Nico Yunes. “Neutron Star Equation of State in Light of GW190814”. In: Physical Review Letters 125.26 (Dec. 2020). issn: 1079-7114. doi: 10.1103/physrevlett.125.261104. url: http://dx.doi.org/10. 1103/PhysRevLett.125.261104.
    [48] F. J. Fattoyev et al. “GW190814: Impact of a 2.6 solar mass neutron star on the nucleonic equations of state”. In: Physical Review C 102.6 (Dec. 2020). issn: 2469-9993. doi: 10.1103/physrevc.102.065805. url: http://dx.doi.org/10.1103/PhysRevC.102. 065805.
    [49] Volodymyr Takhistov, George M. Fuller, and Alexander Kusenko. A Test for the Origin of Solar Mass Black Holes. 2020. arXiv: 2008.12780 [astro-ph.HE].
    [50] R. Abbott et al. “Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences”. In: The Astrophysical Journal Letters 915.1 (June 2021), p. L5. doi: 10.3847/2041-8213/ac082e. url: https://doi.org/10.3847/2041-8213/ac082e.
    [51] R. Abbott et al. “Gravitational-wave Constraints on the Equatorial Ellipticity of Mil- lisecond Pulsars”. In: The Astrophysical Journal 902.1 (Oct. 2020), p. L21. issn: 2041- 8213. doi: 10.3847/2041-8213/abb655. url: http://dx.doi.org/10.3847/2041- 8213/abb655.
    [52] J. Aasi et al. “SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS”. In: The Astrophysical Journal 813.1 (Oct. 2015), p. 39. issn: 1538-4357. doi: 10.1088/0004-637x/813/1/39. url: http: //dx.doi.org/10.1088/0004-637X/813/1/39.
    [53] Ernazar Abdikamalov, Giulia Pagliaroli, and David Radice. Gravitational Waves from Core-Collapse Supernovae. 2020. arXiv:2010.04356[astro-ph.SR].
    [54] Nelson Christensen. “Stochastic gravitational wave backgrounds”. In: Reports on Progress in Physics 82.1 (Nov. 2018), p. 016903. issn: 1361-6633. doi: 10.1088/1361-6633/ aae6b5. url: http://dx.doi.org/10.1088/1361-6633/aae6b5.
    [55] Sylvia Biscoveanu et al. “Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds”. In: Physical Review Letters 125.24 (Dec. 2020). issn: 1079-7114. doi: 10.1103/physrevlett.125.241101. url: http://dx. doi.org/10.1103/PhysRevLett.125.241101.
    [56] R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. 2020. arXiv: 2010.14527 [gr-qc].
    [57] The LIGO Scientific Collaboration et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. 2020. arXiv: 2010.14533 [astro-ph.HE].
    [58] LIGO. url: https://www.ligo.caltech.edu.
    [59] Dennis Overbye. “A Black Hole’s Lunch Provides a Treat for Astronomers”. en-US. In: The New York Times (June 2020). issn: 0362-4331. url: https://www.nytimes.com/ 2020/06/24/science/black-hole-ligo-gravitational.html.
    [60] CHRISTOPHER BERRY. url: https://twitter.com/cplberry/status/1155388945670311937
    [61] B. P. Abbott et al. “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA”. In: Living Reviews in Relativity 23.1 (Sept. 2020). issn: 1433-8351. doi: 10.1007/s41114-020-00026-9. url: http: //dx.doi.org/10.1007/s41114-020-00026-9.
    [62] Planck Collaboration et al. “Planck 2015 results - XIII. Cosmological parameters”. In: A&A 594 (2016), A13. doi: 10.1051/0004-6361/201525830. url: https://doi.org/ 10.1051/0004-6361/201525830.
    [63] Kenneth C Wong et al. “H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3 tension between early- and late-Universe probes”. In: Monthly Notices of the Royal Astronomical Society 498.1 (Sept. 2019), pp. 1420–1439. issn: 0035-8711. doi: 10.1093/mnras/stz3094. eprint: https://academic.oup.com/mnras/article- pdf/498/1/1420/33755111/stz3094.pdf. url: https://doi.org/10.1093/mnras/ stz3094.
    [64] Adam G. Riess et al. “Large Magellanic Cloud Cepheid Standards Provide a 1 Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM”. In: The Astrophysical Journal 876.1 (May 2019), p. 85. issn: 1538- 4357. doi: 10.3847/1538-4357/ab1422. url: http://dx.doi.org/10.3847/1538- 4357/ab1422.
    [65] Adam G. Riess. “The expansion of the Universe is faster than expected”. In: Nature Reviews Physics 2.1 (Dec. 2019), pp. 10–12. issn: 2522-5820. doi: 10.1038/s42254- 019-0137-0. url: http://dx.doi.org/10.1038/s42254-019-0137-0.
    [66] Andreas Finke et al. Cosmology with LIGO/Virgo dark sirens: Hubble parameter and modified gravitational wave propagation. 2021. arXiv: 2101.12660 [astro-ph.CO].
    [67] M. Soares-Santos et al. “First Measurement of the Hubble Constant from a Dark Stan- dard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black- hole Merger GW170814”. In: The Astrophysical Journal 876.1 (Apr. 2019), p. L7. issn: 2041-8213. doi: 10.3847/2041-8213/ab14f1. url: http://dx.doi.org/10.3847/ 2041-8213/ab14f1.
    [68] A. Palmese et al. “A Statistical Standard Siren Measurement of the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object Merger GW190814 and Dark Energy Survey Galaxies”. In: The Astrophysical Journal 900.2 (Sept. 2020), p. L33. issn: 2041-8213. doi: 10.3847/2041-8213/abaeff. url: http://dx.doi.org/10.3847/ 2041-8213/abaeff.
    [69] B. P. Abbott et al. “A gravitational-wave standard siren measurement of the Hub- ble constant”. In: Nature 551 (Nov. 2017), pp. 85–88. issn: 1476-4687. doi: 10.1038/ nature24471. url: https://doi.org/10.1038/nature24471.
    [70] The LIGO Scientific Collaboration et al. A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo. 2020. arXiv: 1908.06060 [astro-ph.CO].
    [71] Hsin-Yu Chen et al. A Standard Siren Cosmological Measurement from the Poten- tial GW190521 Electromagnetic Counterpart ZTF19abanrhr. 2020. arXiv: 2009.14057 [astro-ph.CO].
    [72] V. Gayathri et al. Hubble Constant Measurement with GW190521 as an Eccentric Black Hole Merger. 2020. arXiv: 2009.14247 [astro-ph.HE].
    [73] Suvodip Mukherjee et al. First measurement of the Hubble parameter from bright binary black hole GW190521. 2020. arXiv: 2009.14199 [astro-ph.CO].
    [74] Ephraim Fischbach et al. “Reanalysis of the Eoumltvös experiment”. In: Phys. Rev. Lett. 56 (1 Jan. 1986), pp. 3–6. doi: 10.1103/PhysRevLett.56.3. url: https: //link.aps.org/doi/10.1103/PhysRevLett.56.3.
    [75] E.G. Adelberger, B.R. Heckel, and A.E. Nelson. “TESTS OF THEGRAVITATIONALINVERSE- SQUARELAW”. In: Annual Review of Nuclear and Particle Science 53.1 (Dec. 2003),
    pp. 77–121. issn: 1545-4134. doi: 10.1146/annurev.nucl.53.041002.110503. url: http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503.
    [76] Robert L. Forward and Larry R. Miller. “Generation and Detection of Dynamic Gravitational-Gradient Fields”. In: Journal of Applied Physics 38.2 (1967), pp. 512–518. doi: 10.1063/1.1709366. eprint: https://doi.org/10.1063/1.1709366. url: https: //doi.org/10.1063/1.1709366.
    [77] Daniel R. Long. “Why do we believe Newtonian gravitation at laboratory dimensions?” In: Phys. Rev. D 9 (4 Feb. 1974), pp. 850–852. doi: 10.1103/PhysRevD.9.850. url: https://link.aps.org/doi/10.1103/PhysRevD.9.850.
    [78] F. D. Stacey and G. J. Tuck. “Geophysical evidence for non-newtonian gravity”. In: Nature 292.5820 (July 1981), pp. 230–232. issn: 1476-4687. doi: 10.1038/292230a0. url: https://www.nature.com/articles/292230a0.
    [79] F. D. Stacey et al. “Geophysics and the law of gravity”. In: Rev. Mod. Phys. 59 (1 Jan. 1987), pp. 157–174. doi: 10.1103/RevModPhys.59.157. url: https://link.aps.org/ doi/10.1103/RevModPhys.59.157.
    [80] Yujiro Ogawa, Kimio Tsubono, and Hiromasa Hirakawa. “Experimental test of the law of gravitation”. In: Phys. Rev. D 26 (4 Aug. 1982), pp. 729–734. doi: 10.1103/PhysRevD. 26.729. url: https://link.aps.org/doi/10.1103/PhysRevD.26.729.
    [81] Norikatsu Mio, Kimio Tsubono, and Hiromasa Hirakawa. “Experimental test of the law of gravitation at small distances”. In: Phys. Rev. D 36 (8 Oct. 1987), pp. 2321–2326. doi: 10.1103/PhysRevD.36.2321. url: https://link.aps.org/doi/10.1103/PhysRevD. 36.2321.
    [82] P. Astone et al. “Evaluation and preliminary measurement of the interaction of a dynam- ical gravitational near field with a cryogenic gravitational wave antenna”. In: Zeitschrift für Physik C Particles and Fields 50.1 (Mar. 1991), pp. 21–29. issn: 1431-5858. doi: 10.1007/BF01558552. url: https://doi.org/10.1007/BF01558552.
    [83] P. Astone et al. “Experimental study of the dynamic Newtonian field with a cryogenic gravitational wave antenna”. In: The European Physical Journal C - Particles and Fields 5.4 (Oct. 1998), pp. 651–664. issn: 1434-6052. doi: 10.1007/s100529800987. url: https://doi.org/10.1007/s100529800987.
    [84] Lorenzo Iorio. “Constraints on a Yukawa gravitational potential from laser data of LA- GEOS satellites”. In: Physics Letters A 298.5 (2002), pp. 315–318. issn: 0375-9601. doi: https://doi.org/10.1016/S0375-9601(02)00580-7. url: https://www. sciencedirect.com/science/article/pii/S0375960102005807.
    [85] P.E. Boynton et al. “Gravitation physics at BGPL”. In: New Astronomy Reviews 51.3 (2007). Francesco Melchiorri: Scientist, Pioneer, Mentor, pp. 334–340. issn: 1387-6473. doi: https://doi.org/10.1016/j.newar.2006.11.035. url: https://www. sciencedirect.com/science/article/pii/S1387647306003174.
    [86] David M. Lucchesi. “The LAGEOS satellites orbit and Yukawa-like interactions”. In: Advances in Space Research 47.7 (2011), pp. 1232–1237. issn: 0273-1177. doi: https: //doi.org/10.1016/j.asr.2010.11.029. url: https://www.sciencedirect.com/ science/article/pii/S027311771000760X.
    [87] Péter Raffai et al. “Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators”. In: Physical Review D 84.8 (Oct. 2011). issn: 1550-2368. doi: 10.1103/physrevd.84.082002. url: http://dx.doi.org/10. 1103/PhysRevD.84.082002.
    [88] J A Clark et al. “Observing gravitational waves from the post-merger phase of bi- nary neutron star coalescence”. In: Classical and Quantum Gravity 33.8 (Mar. 2016), p. 085003. issn: 1361-6382. doi: 10.1088/0264-9381/33/8/085003. url: http: //dx.doi.org/10.1088/0264-9381/33/8/085003.
    [89] A. A. Michelson and E. W. Morley. “On the relative motion of the Earth and the luminiferous ether”. In: American Journal of Science s3-34.203 (1887), pp. 333–345. issn: 0002-9599. doi: 10.2475/ajs.s3-34.203.333. eprint: https://www.ajsonline. org/content/s3-34/203/333.full.pdf. url: https://www.ajsonline.org/ content/s3-34/203/333.
    [90] Charlotte Bond et al. “Interferometer techniques for gravitational-wave detection”. In: Living reviews in relativity 19.1 (2016), p. 3. issn: 1433-8351. doi: 10.1007/s41114- 016-0002-8. url: https://europepmc.org/articles/PMC5315762.
    [91] Peter Aufmuth and Karsten Danzmann. “Gravitational wave detectors”. In: New Journal of Physics 7 (Sept. 2005), pp. 202–202. doi: 10.1088/1367-2630/7/1/202. url: https://doi.org/10.1088/1367-2630/7/1/202.
    [92] Jean-Yves Vinet et al. “Optimization of long-baseline optical interferometers for gravitational- wave detection”. In: Phys. Rev. D 38 (2 July 1988), pp. 433–447. doi: 10.1103/ PhysRevD.38.433. url: https://link.aps.org/doi/10.1103/PhysRevD.38.433.
    [93] Peter R Saulson. Fundamentals of Interferometric Gravitational Wave Detectors. 2nd. WORLD SCIENTIFIC, 2017. doi: 10.1142/10116. eprint: https://www.worldscientific. com/doi/pdf/10.1142/10116. url: https://www.worldscientific.com/doi/abs/ 10.1142/10116.
    [94] Jean-Yves Vinet. “Optical gravitational wave detectors on the ground and in space: theory and technology”. In: Research in Astronomy and Astrophysics 10.10 (Sept. 2010), pp. 956–1004. doi: 10.1088/1674-4527/10/10/003. url: https://doi.org/10. 1088/1674-4527/10/10/003.
    [95] K Kuroda and. “Status of LCGT”. In: Classical and Quantum Gravity 27.8 (Apr. 2010), p. 084004. doi: 10.1088/0264-9381/27/8/084004. url: https://doi.org/10.1088/ 0264-9381/27/8/084004.
    [96] “KAGRA: 2.5 generation interferometric gravitational wave detector”. In: Nature Astron- omy 3.1 (Jan. 2019), pp. 35–40. issn: 2397-3366. doi: 10.1038/s41550-018-0658-y. url: http://dx.doi.org/10.1038/s41550-018-0658-y.
    [97] Tomotada Akutsu and. “Large-scale cryogenic gravitational-wave telescope in Japan: KAGRA”. In: Journal of Physics: Conference Series 610 (May 2015), p. 012016. doi: 10.1088/1742-6596/610/1/012016. url: https://doi.org/10.1088/1742- 6596/610/1/012016.
    [98] Liz Kruesi. Japan’s KAGRA searches the sky for gravitational waves. 2020. url: https: //www.symmetrymagazine.org/article/japans-kagra-searches-the-sky-for- gravitational-waves (visited on 02/01/2021).
    [99] L. Ábel Somlai et al. “Seismic noise measures for underground gravitational wave detec- tors”. In: Acta Geodaetica et Geophysica 54.2 (May 2019), pp. 301–313. issn: 2213-5820. doi: 10.1007/s40328-019-00257-5. url: http://dx.doi.org/10.1007/s40328- 019-00257-5.
    [100] M. G. Beker et al. “Improving the sensitivity of future GW observatories in the 1– 10 Hz band: Newtonian and seismic noise”. en. In: General Relativity and Gravitation 43.2 (Feb. 2011), pp. 623–656. issn: 1572-9532. doi: 10.1007/s10714-010-1011-7. url: https://doi.org/10.1007/s10714-010-1011-7.
    [101] T Akutsu et al. “First cryogenic test operation of underground km-scale gravitational- wave observatory KAGRA”. In: Classical and Quantum Gravity 36.16 (July 2019), p. 165008. doi: 10.1088/1361-6382/ab28a9. url: https://doi.org/10.1088/1361- 6382/ab28a9.
    [102] T Akutsu et al. “Overview of KAGRA: Detector design and construction history”. In: Progress of Theoretical and Experimental Physics (Aug. 2020). ptaa125. issn: 2050-3911. doi: 10.1093/ptep/ptaa125. eprint: https://academic.oup.com/ptep/advance- article-pdf/doi/10.1093/ptep/ptaa125/34386189/ptaa125.pdf. url: https: //doi.org/10.1093/ptep/ptaa125.
    [103] Linqing Wen and Yanbei Chen. “Geometrical expression for the angular resolution of a network of gravitational-wave detectors”. In: Physical Review D 81.8 (Apr. 2010). issn: 1550-2368. doi: 10.1103/physrevd.81.082001. url: http://dx.doi.org/10.1103/ PhysRevD.81.082001.
    [104] Virgo. url: https://www.ego-gw.it.
    [105] GEO600. url: https://www.geo600.org/.
    [106] C. S. UNNIKRISHNAN. “IndIGO AND LIGO-INDIA: SCOPE AND PLANS FOR GRAVITATIONAL WAVE RESEARCH AND PRECISION METROLOGY IN INDIA”. In: International Journal of Modern Physics D 22.01 (Jan. 2013), p. 1341010. issn: 1793-6594. doi: 10.1142/s0218271813410101. url: http://dx.doi.org/10.1142/ S0218271813410101.
    [107] Einstein Telescope. url: http://www.et-gw.eu/.
    [108] ET Steering Committee Editorial Team. Design Report Update 2020. Sept. 2020. url:
    http://www.et-gw.eu/index.php/relevant-et-documents.
    [109] S Hild et al. “Sensitivity studies for third-generation gravitational wave observatories”. In: Classical and Quantum Gravity 28.9 (Apr. 2011), p. 094013. issn: 1361-6382. doi: 10.1088/0264-9381/28/9/094013. url: http://dx.doi.org/10.1088/0264- 9381/28/9/094013.
    [110] Sheila Dwyer et al. “Gravitational wave detector with cosmological reach”. In: Phys. Rev. D 91 (8 Apr. 2015), p. 082001. doi: 10.1103/PhysRevD.91.082001. url: https: //link.aps.org/doi/10.1103/PhysRevD.91.082001.
    [111] Cosmic Explorer. url: https://cosmicexplorer.org/.
    [112] David Reitze et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave As-
    tronomy beyond LIGO. 2019. arXiv: 1907.04833 [astro-ph.IM].
    [113] David Reitze et al. The US Program in Ground-Based Gravitational Wave Science:
    Contribution from the LIGO Laboratory. 2019. arXiv: 1903.04615 [astro-ph.IM].
    [114] EADS Astrium. Artist’s impression of the three LISA spacecraft. Feb. 2010. url: https: //sci.esa.int/web/lisa/-/46425-the-lisa-spacecraft-constellation (visited on 02/01/2021).
    [115] LISA. url: https://lisa.nasa.gov/.
    [116] Seiji Kawamura et al. Current status of space gravitational wave antenna DECIGO and
    B-DECIGO. 2020. arXiv: 2006.13545 [gr-qc].
    [117] DECIGO. url: https://decigo.jp/wdecigo_e.html.
    [118] S Kawamura et al. “The Japanese space gravitational wave antenna - DECIGO”. In: Journal of Physics: Conference Series 122 (July 2008), p. 012006. doi: 10.1088/1742- 6596/122/1/012006. url: https://doi.org/10.1088/1742-6596/122/1/012006.
    [119] Yuta Michimura et al. “Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope”. In: Classical and Quantum Gravity 34.22 (Oct. 2017), p. 225001. doi: 10.1088/1361-6382/aa90e3. url: https://doi.org/10.1088/ 1361-6382/aa90e3.
    [120] Ling Sun et al. “Characterization of systematic error in Advanced LIGO calibration”. In: Classical and Quantum Gravity 37.22 (Oct. 2020), p. 225008. issn: 1361-6382. doi: 10.1088/1361-6382/abb14e. url: http://dx.doi.org/10.1088/1361-6382/abb14e.
    [121] Ethan Payne et al. “Gravitational-wave astronomy with a physical calibration model”. In: Physical Review D 102.12 (Dec. 2020). issn: 2470-0029. doi: 10.1103/physrevd. 102.122004. url: http://dx.doi.org/10.1103/PhysRevD.102.122004.
    [122] B. P. Abbott et al. “Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914”. In: Physical Review D 95.6 (Mar. 2017). issn: 2470-0029. doi: 10.1103/physrevd.95.062003. url: http://dx.doi.org/10.1103/ PhysRevD.95.062003.
    [123] D Tuyenbayev et al. “Improving LIGO calibration accuracy by tracking and compensat- ing for slow temporal variations”. In: Classical and Quantum Gravity 34.1 (Dec. 2016), p. 015002. issn: 1361-6382. doi: 10.1088/0264-9381/34/1/015002. url: http: //dx.doi.org/10.1088/0264-9381/34/1/015002.
    [124] J. Abadie et al. “Calibration of the LIGO gravitational wave detectors in the fifth science run”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 624.1 (Dec. 2010), pp. 223–240. issn: 0168-9002. doi: 10.1016/j.nima.2010.07.089. url: http://dx.doi.org/10. 1016/j.nima.2010.07.089.
    [125] T Akutsu et al. “Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer”. In: Progress of Theoretical and Experimental Physics (Feb. 2021). ptab018. issn: 2050-3911. doi: 10.1093/ptep/ ptab018. eprint: https://academic.oup.com/ptep/advance-article-pdf/doi/ 10.1093/ptep/ptab018/36334825/ptab018.pdf. url: https://doi.org/10.1093/ ptep/ptab018.
    [126] Craig Cahillane et al. “Calibration uncertainty for Advanced LIGO’s first and second observing runs”. In: Phys. Rev. D 96 (10 Nov. 2017), p. 102001. doi: 10.1103/PhysRevD. 96.102001. url: https://link.aps.org/doi/10.1103/PhysRevD.96.102001.
    [127] Yuki Inoue et al. “Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure and gravity field calibrators”. In: Physical Review D 98.2 (July 2018). issn: 2470-0029. doi: 10.1103/physrevd.98.022005. url: http: //dx.doi.org/10.1103/PhysRevD.98.022005.
    [128] D Estevez et al. “First tests of a Newtonian calibrator on an interferometric gravitational wave detector”. In: Classical and Quantum Gravity 35.23 (Nov. 2018), p. 235009. issn: 1361-6382. doi: 10.1088/1361-6382/aae95f. url: http://dx.doi.org/10.1088/ 1361-6382/aae95f.
    [129] D.A Clubley et al. “Calibration of the Glasgow 10 m prototype laser interferometric gravitational wave detector using photon pressure”. In: Physics Letters A 283.1 (2001), pp. 85–88. issn: 0375-9601. doi: https://doi.org/10.1016/S0375-9601(01)00231-6. url: https://www.sciencedirect.com/science/article/pii/S0375960101002316.
    [130] K. Mossavi et al. “A photon pressure calibrator for the GEO 600 gravitational wave detector”. In: Physics Letters A 353.1 (2006), pp. 1–3. issn: 0375-9601. doi: https: //doi.org/10.1016/j.physleta.2005.12.053. url: https://www.sciencedirect. com/science/article/pii/S0375960105019304.
    [131] S Hild et al. “Photon-pressure-induced test mass deformation in gravitational-wave de- tectors”. In: Classical and Quantum Gravity 24.22 (Nov. 2007), pp. 5681–5688. issn: 1361-6382. doi: 10.1088/0264-9381/24/22/025. url: http://dx.doi.org/10.1088/ 0264-9381/24/22/025.
    [132] E Goetz et al. “Precise calibration of LIGO test mass actuators using photon radiation pressure”. In: Classical and Quantum Gravity 26.24 (Nov. 2009), p. 245011. issn: 1361- 6382. doi: 10.1088/0264-9381/26/24/245011. url: http://dx.doi.org/10.1088/ 0264-9381/26/24/245011.
    [133] S. Karki et al. “The Advanced LIGO photon calibrators”. In: Review of Scientific Instruments 87.11 (Nov. 2016), p. 114503. issn: 1089-7623. doi: 10.1063/1.4967303. url: http://dx.doi.org/10.1063/1.4967303.
    [134] Dimitri Estevez et al. “The Advanced Virgo photon calibrators”. In: Classical and Quan- tum Gravity (Feb. 2021). issn: 1361-6382. doi: 10.1088/1361-6382/abe2db. url: http://dx.doi.org/10.1088/1361-6382/abe2db.
    [135] L Matone et al. “Benefits of artificially generated gravity gradients for interferometric gravitational-wave detectors”. In: Classical and Quantum Gravity 24.9 (Apr. 2007), pp. 2217–2229. issn: 1361-6382. doi: 10.1088/0264-9381/24/9/005. url: http: //dx.doi.org/10.1088/0264-9381/24/9/005.
    [136] Yuki Inoue et al. “Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure and gravity field calibrators”. In: Phys. Rev. D 98 (2 July 2018), p. 022005. doi: 10.1103/PhysRevD.98.022005. url: https://link.aps. org/doi/10.1103/PhysRevD.98.022005.
    [137] Hiromasa Hirakawa, Kimio Tsubono, and Katsunobu Oide. “Dynamical test of the law of gravitation”. In: Nature 283.5743 (Jan. 1980), pp. 184–185. issn: 1476-4687. doi: 10.1038/283184a0. url: https://www.nature.com/articles/283184a0.
    [138] Toshikazu Suzuki et al. “Calibration of Gravitational Radiation Antenna by Dynamic Newton Field”. In: Japanese Journal of Applied Physics 20.7 (July 1981), pp. L498–L500. doi: 10.1143/jjap.20.l498. url: https://doi.org/10.1143/jjap.20.l498.
    [139] Dimitri Estevez, Benoît Mours, and Thierry Pradier. “Newtonian calibrator tests during the Virgo O3 data taking”. In: Classical and Quantum Gravity (2021). url: http: //iopscience.iop.org/article/10.1088/1361-6382/abe2da.
    [140] Michael P. Ross et al. Initial Results from the LIGO Newtonian Calibrator. 2021. arXiv: 2107.00141 [gr-qc].
    [141] J.R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. ASMSU/Spartans.4.Spartans Textbook. University Science Books, 1997. isbn: 9780935702422. url: https://books.google.com.tw/books?id=ypNnQgAACAAJ.
    [142] D Tuyenbayev et al. “Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations”. In: Classical and Quantum Gravity 34.1 (Dec. 2016), p. 015002. issn: 1361-6382. doi: 10.1088/0264-9381/34/1/015002. url: http: //dx.doi.org/10.1088/0264-9381/34/1/015002.
    [143] A D Viets et al. “Reconstructing the calibrated strain signal in the Advanced LIGO detectors”. In: Classical and Quantum Gravity 35.9 (Apr. 2018), p. 095015. issn: 1361- 6382. doi: 10.1088/1361-6382/aab658. url: http://dx.doi.org/10.1088/1361- 6382/aab658.
    [144] Derek Davis et al. “Improving the sensitivity of Advanced LIGO using noise subtraction”. In: Classical and Quantum Gravity 36.5 (Feb. 2019), p. 055011. issn: 1361-6382. doi: 10.1088/1361-6382/ab01c5. url: http://dx.doi.org/10.1088/1361-6382/ab01c5.
    [145] Duncan Macleod et al. gwpy/gwpy: 2.0.2. Version v2.0.2. Dec. 2020. doi: 10.5281/ zenodo.4301851. url: https://doi.org/10.5281/zenodo.4301851.
    [146] P.A. Zyla et al. “Review of Particle Physics”. In: PTEP 2020.8 (2020), p. 083C01. doi: 10.1093/ptep/ptaa104.
    [147] M. Pitkin, C. Messenger, and L. Wright. “Astrophysical calibration of gravitational-wave detectors”. In: Phys. Rev. D 93 (6 Mar. 2016), p. 062002. doi: 10.1103/PhysRevD.93. 062002. url: https://link.aps.org/doi/10.1103/PhysRevD.93.062002.
    [148] Reed Essick and Daniel E Holz. “Calibrating gravitational-wave detectors with GW170817”. In: Classical and Quantum Gravity 36.12 (May 2019), p. 125002. issn: 1361-6382. doi: 10.1088/1361-6382/ab2142. url: http://dx.doi.org/10.1088/1361-6382/ab2142.
    [149] B. P. Abbott et al. “Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo”. In: Living Reviews in Relativity 19.1 (Feb. 2016), p. 1. issn: 1433-8351. doi: 10.1007/lrr-2016-1. url: https://doi.org/ 10.1007/lrr-2016-1.

    下載圖示
    QR CODE