簡易檢索 / 詳目顯示

研究生: 楊士寬
Yang, Shih-Kuan
論文名稱: 非彈性應變回復法之三維應力測量應用於宜蘭地熱探勘之評估
Three-Dimensional In-Situ Stress Determination by Anelastic Strain Recovery and Its Application to Geothermal Exploration at Ilan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 206
中文關鍵詞: 非彈性應變回復法岩心視構造分析導水裂隙地熱發電宜蘭
英文關鍵詞: Ilan, Core Description, Anelastic Strain Recovery, Fluid Conduit, Geothermal Power
DOI URL: http://doi.org/10.6345/NTNU201901107
論文種類: 學術論文
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 世界上的化石能源逐年面臨匱乏的危機,這將對人類的生活與經濟發展造成衝擊,因此開發替代能源為全球必行的趨勢,考慮環境保護、永續利用、經濟發展與資源優勢之因素,地熱能為適合臺灣發展的替代能源之一。
    位於太平洋火環帶西緣的臺灣,是個富含地熱資源的國家,其中宜蘭地區地下水充足,若能在該地深處找到熱源與水源富集之區域,該地則即為理想的地熱電廠場址。
    本研究以宜蘭紅柴林地熱潛能區紅柴林1號井(HCL01)與紅柴林2號井(HCL02)之岩心為樣本,進行非彈性應變回復法(ASR)實驗,量測現地的三維應力場,並以岩心描述取得現地導水裂隙與弱面位態的資料,利用三維應力與裂隙位態評估現地裂隙的滑動與擴張趨勢以及導水效果的好壞,作為地熱開發潛能的評估依據。
    紅柴林1號井樣本所解算出的三軸應變場結果顯示,各樣本的三軸應變場沒有特定的規律,每個深度之樣本所對應的應力場型式也不相同。HCL01-01樣本結果不屬於安德森斷層理論的任一種斷層型式的應力場,水平最大應力的擠壓方向為西北-東南向,解算三為主應力之規模由大到小分別為46.05、41.06、34.29 MPa;HCL01-02樣本結果趨近於逆斷層型式的應力場,水平最大應力的擠壓方向為北北西-南南東向,解算三為主應力之規模由大到小分別為57.86、34.03、29.3 MPa;HCL01-03樣本結果趨近於正斷層型式的應力場,水平最大應力的擠壓方向為北北東-南南西向,解算三為主應力之規模由大到小分別為41.35、34.46、27.96 MPa;HCL01-04樣本結果趨近於逆斷層型式的應力場,水平最大應力的擠壓方向為北北東-南南西向,解算三為主應力之規模由大到小分別為68.58、61.16、51.09 MPa。整體而言,各樣本ASR實驗顯示的應力場結果並不一致,但有水平最大主應力的擠壓方向皆趨近為南北向擠壓的共通點。
    紅柴林2號井樣本所解算出的三軸應變場結果顯示,各樣本的三軸應變場沒有特定的規律,每個樣本所對應的應力場型式也不同。HCL02-06樣本結果趨近於正與走向滑移間過渡斷層型式的應力場,水平最大應力的擠壓方向為西北西-東南東向,解算三為主應力之規模由大到小分別為65.09、56.46、34.96 MPa;HCL02-07樣本結果趨近於走向滑移斷層型式的應力場,水平最大應力的擠壓方向為西北-東南向,解算三為主應力之規模由大到小分別為80.08、60.79、46.8 MPa。HCL02-6、7樣本水平最大主應力的擠壓方向趨近於西北東南向擠壓,彼此間有水平最大應力擠壓方向雷同的共通點。
    紅柴林1號井樣本解算出的滑動趨勢皆小於0.6,各位態的構造弱面均不容易錯動活化。紅柴林1號井樣本解算出的擴張趨勢顯示,深度約1492公尺西北-東南走向、向東北傾斜之中到高傾角的構造弱面有高的擴張趨勢;深度約1560公尺東北-西南走向、向東南傾斜之中傾斜程度傾角的構造弱面有高的擴張趨勢;深度約1579公尺南北走向、向東或向南傾斜之高傾角的構造弱面有高的擴張趨勢;深度約2222公尺西北-東南走向、向東北傾斜之中到低傾角的構造弱面有高的擴張趨勢。
    本研究由紅柴林1號井岩心樣本所計算的擴張趨勢與附近深度構造弱面位態進行比對,分析的結果為大部分的構造弱面(如: 層面、劈理、裂隙、礦脈、斷層擦痕面、導水裂隙)位態都沒有高擴張趨勢,於現今應力場下不利於以擴張撐裂的方式發展成為導水裂隙。只有1491.5~1555.7公尺深朝西南方傾沒的礦脈群擁有高擴張趨勢,較有機會以張裂的方式發展成為現今的導水裂隙。
    若能由其他資料,例如井測資料,證實該位置導水裂隙的存在,將有利於加強型地熱電廠之注入井與生產井的設井相對位置之評估。

    The world's fossil energy is facing a crisis of scarcity year by year, which will impact human life and economic development. Therefore, the development of alternative energy is a global imperative trend. Considering environmental protection, sustainable utilization, economic development and resource advantages, geothermal energy is one of the alternative energy sources suitable for Taiwan's development.
    Taiwan, located in the western margin of the Pacific Ring of Fire, is a country rich in geothermal resources. Among them, the groundwater in Yilan area is abundant. If we can find an area rich in heat sources and water sources deep in the area, it will be an ideal geothermal power plant site.
    In this study, the core of Hongchailin No. 1 (HCL01) and Hongchailin No. 2 (HCL02) in Yilan Hongchailin geothermal potential area was taken as samples, and the non-elastic strain recovery method (ASR) experiment was carried out to measure the three-dimensional stress field in situ. The data of water conduction fracture and weak surface state were obtained by core description, and the three-dimensional stress and fracture position state were evaluated by using the three-dimensional stress and fracture position state. The trend of slip and expansion of ground fissures and the effect of water diversion are estimated as the basis for evaluating the potential of geothermal development.
    The results of triaxial strain field calculated from well Hongchailin 1 show that the triaxial strain field of each sample has no specific law, and the stress field pattern corresponding to each depth sample is also different. HCL01-01 sample results do not belong to the stress field of any fault type in Anderson fault theory. The compression direction of the horizontal maximum stress is northwest-southeast, and the magnitude of the three main stresses calculated is 46.05, 41.06 and 34.29 MPa, respectively. HCL01-02 sample results tend to the stress field of the reverse fault type, and the horizontal maximum stress should be calculated. The compression direction of the force is NNW-SE, and the magnitude of the three principal stresses calculated is 57.86, 34.03 and 29.3 MPa from large to small, respectively. The results of HCL01-03 samples tend to normal fault-type stress field. The compression direction of the horizontal maximum stress is NNE-SW, and the magnitude of the three principal stresses calculated is 41. 35, 34.46, 27.96 MPa; HCL01-04 sample results tend to stress field of reverse fault type. The compression direction of horizontal maximum stress is NNE-SW. The magnitude of the three main stresses calculated is 68.58, 61.16 and 51.09 MPa, respectively. On the whole, the results of ASR experiments show that the stress field of each sample is not consistent, but the extrusion direction of the maximum horizontal principal stress tends to be the common point of the North-South extrusion.
    The results of triaxial strain field calculated from well Hongchailin No. 2 show that there is no specific rule in triaxial strain field of each sample, and the corresponding stress field pattern of each sample is different. The results of HCL02-06 samples tend to be the stress field of transition fault type between positive and strike-slip. The compression direction of horizontal maximum stress is northwest west-southeast-east. The magnitude of the three main stresses calculated is 65.09, 56.46 and 34.96 MPa, respectively. The results of HCL02-07 samples tend to be the stress field of strike-slip fault type, and the magnitude of the three main stresses calculated is 65.09, 56.46 and 34.96 MPa. The extrusion direction of the maximum stress is from northwest to southeast, and the magnitude of the three principal stresses is 80.08, 60.79 and 46.8 MPa, respectively. The direction of horizontal maximum principal stress in HCL02-6 and 7 samples tends to be northwest and southeast, and there are common points in the direction of horizontal maximum stress extrusion between HCL02-6 and 7 samples.
    The slip trend calculated from well Hongchailin 1 is less than 0.6, and the weak facets of each state are not easy to be distorted and activated. The expansion trend calculated from well Hongchailin 1 shows that there is a high expansion trend in the weak tectonic plane with a depth of about 1492 meters northwest-southeast and a middle-to-high dip in the Northeast direction, and a high expansion trend in the weak tectonic plane with a depth of about 1560 meters northeast-southwest direction and a middle-dip dip in the Southeast direction. Structural weak planes with a high dip angle of 9 meters north-south, east or South incline have a high trend of expansion, while those with a depth of about 222 meters northwest-southeast and a middle-to-low dip angle inclined northeast have a high trend of expansion.
    Comparing the dilatation trend calculated by core samples of Well Hongchailin No. 1 with the position of weak plane of deep structure nearby, the results show that most of the structural weak planes (such as bedding, cleavage, fissure, vein, fault scratch surface and water conduction fissure) have no high dilatation trend, which is not conducive to dilatation under the present stress field. The way of bracing crack develops into water conduction crack. Only 1491.5-1555.7 meters of vein group, which has a tendency of high expansion, has a better chance to develop into current water conduction fissures in the form of tension fissures.
    If other data, such as well logging data, can confirm the existence of water-conducting fissures at this location, it will be helpful to evaluate the relative location of injection wells and production wells in enhanced geothermal power plants.

    中文摘要 1 ABSTRACT II 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 11 1.3 研究位置與交通 16 第二章 地質背景 19 2.1 地體架構 19 2.2 區域地質概況 34 2.3 前人研究 43 第三章 研究方法 65 3.1 非彈性應變回復法 65 3.2 岩心中視構造分析 90 3.3 斷層擦痕反演 93 3.4 滑動趨勢與擴張趨勢 94 第四章 實驗分析成果 95 4.1 非彈性應變回復法(ASR)實驗結果 95 4.2 岩心中視構造分析結果 107 4.3 斷層擦痕古應力場反演結果 142 第五章 討論 145 5.1 非彈性應變回復法結果隨深度變化不規律之成因探討 145 5.2 滑動趨勢與構造弱面之關係 149 5.3 擴張趨勢與構造弱面之關係 152 5.4 研究結果與前人研究之比較 158 5.5 非彈性回復法化簡技巧之討論 193 第六章 結論 195 參考文獻 197

    大江二郎(1931)李棟山圖幅及說明書。臺灣總督府殖產局出版,第608號。
    中氣象局數位科普網(2016) https://pweb.cwb.gov.tw/PopularScience/。
    王崇興(2016a)紅柴林1號地熱試驗鑽井3月份工程報告。簡報,紅柴林一號井鑽井會議,3月18日,宜蘭縣三星鄉紅柴林一號井場。台灣中油股份有限公司探採事業部鑽探工程處。
    王崇興(2016b)紅柴林2 號地熱試驗鑽井12 月份工程報告。簡報,紅柴林二號井鑽井會議,12月2日,宜蘭縣三星鄉紅柴林二號井場。台灣中油股份有限公司探採事業部鑽探工程處。
    市川雄一(1932)新店圖幅及說明書。臺灣總督府殖產局出版,第655號。
    江新春 (1976) 宜蘭平原之震測。礦業技術,第14卷,第6期,第215-221頁。
    吳方義 (2016) 宜蘭地溫與斷層資料整理。簡報,紅柴林一號井鑽井會議,3月18日,宜蘭縣三星鄉紅柴林一號井場。國立臺灣師範大學地球科學系暨研究所。
    吳永助(1976)清水土場地熱區及其外圍之地質。礦業技術,第十四期,484-489頁。
    何春蓀(1975)臺灣地質概論,臺灣地質圖說明書。中華民國經濟部,153頁。
    何春蓀(1986)臺灣地質概論,增訂第二版。經濟部中央地質調查所,163頁。
    宋聖榮(2017)。〈台灣地熱能源發展的現況、展望與困境〉,林俊全、周桂田(2017)《氣候變遷下的國家發展藍圖》,頁255-277。
    林啟文、林偉雄(1995)三星地質圖幅及說明書,五萬分之一地質圖幅第十五號:經濟部中央地質調查所,共56頁。
    林啟文、高銘健(1997)蘇澳地質圖幅及說明書,五萬分之一地質圖幅第十六號:經濟部中央地質調查所,共47頁。
    邱詠恬(2008)利用GPS 觀測資料探討宜蘭平原之現今地殼變形:國立臺灣大學理學院地質科學研究所碩士論文,共90頁。
    科技部(2016)第二期能源國家型科技計畫,地熱主軸計畫。
    柳志錫、郭泰融、李清瑞、李伯亨、韓吟龍、劉力維、王俊堯(2012)「地熱發電發展現況與未來方向」,第八十五卷,第四期,頁114-129。
    高子恩(2016)宜蘭紅柴林地區現地應力與導水裂隙關係之研究:國立臺灣師範大學地球科學研究所碩士論文,共108頁。
    孫天祥(2014)臺灣宜蘭清水地熱區之應力狀態研究:國立臺灣師範大學地球科學研究所碩士論文,共66頁。
    徐啟舜(2015)蘭陽平原以南山麓地區古應力分析之研究:國立臺灣師範大學地球科學研究所碩士論文,共120頁。
    郭明錦(2004)再生能源:地熱資源:國立成功大學資源工程系《科學發展》383期,14-19頁。
    陳文山等人、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍(2016)臺灣地質概論,社團法人中華民國地質學會,共204頁。
    陳培源(2008)台灣地質,台灣省應用地質技師公會,共485頁。
    張麗旭(1955)臺灣之地層,臺灣銀行季刊,第七卷第二期。
    曾長生(1978)宜蘭縣清水及土場區地質及地熱產狀,臺灣石油地質,第十五號,第11至23頁。
    黃信樺(2007)臺灣東北地區的地震構造─由碰撞末期轉變為隱沒拉張之構造特性。國立臺灣大學理學院地質科學研究所碩士論文,共110頁。
    葉恩肇、洪日豪、王泰典(2016)宜蘭平原及鄰近地區孔內地球物理井測及導水裂隙與現地應力力學關係之研究,第二期能源國家型科技計畫地熱及天然氣水合物主軸中心105年地熱分向成果發表會。
    葉恩肇、洪日豪、王泰典(2019)宜蘭平原及鄰近地區孔內地球物理井測及導水裂隙與現地應力力學關係之研究,第二期能源國家型科技計畫地熱及天然氣水合物主軸中心108年地熱分向成果發表會。
    經濟部能源局(2005)全國能源會議大會資料。
    經濟部水利署(2019) https://www.wra.gov.tw/
    經濟部能源局(2019) https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx
    維基百科(2019): https://zh.wikipedia.org/
    劉佳玫(2011)用二氧化矽地質溫度計估算台灣熱流及探討異常熱流之控制因素: 國立台灣大學地質科學研究所博士論文,共134 頁。
    鄧屬予(2002)台灣新生代大地構造,台灣的大地構造。中國地質學會出版,第49-93 頁。
    鄧屬予(2007)台灣第四紀大地構造:經濟部中央地質調查所特刊,第十八號, 共24 頁。
    鄧屬予、宋聖榮、葉恩肇、林殿順、劉佳玫與蔡宜伶 (2013) 從大地構造看台灣地熱潛能。西太平洋地質科學,第13卷,第1-38頁。
    鍾振東(1973)臺灣之所謂古第三系烏來統之層位問題。地質,第一卷第一期第109-116頁。
    謝凱旋、洪崇勝、陳勉銘、游能悌(2011)臺灣中部雪山山脈南段微化石之研究:眉溪砂岩中段與廬山層底部的年代制約。經濟部中央地質調查所特刊,25號,133-166頁。
    Angelier, J., 1979. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics 56, 17-26.
    Angelier, J., 1984. Tectonic analysis of fault slip data sets. J. Geophys. Res, 89, 5835-5848.
    Angelier, J., 1986. Preface to the special issue on “Geodynamics of the Eurasian-Philippine Sea Plate Boundary” Tectonophysics, 125, IX-X.
    Angelier, J., Bergerat, F., Hao, T. C., Wen, S. J., Chia, Y. L. 1990. Paleostress
    Angelier, J., 1994. Fault slip analysis and palaeostress construction. In: Hancock, P.L., (Ed.), Continental Deformation, Pergamon Press, London, 53-100.
    Barrier, E. and J. Angelier, 1986. Active collision in eastern Taiwan: the Coastal Range. Tectonophysics, 125, 39-72.
    Beyssac, O., M. Simoes, J. P. Avouac, K. A. Farley, Y.G. Chen, Y.C. Chan, and B. Goffe´, 2007. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26, TC6001, doi:10.1029/ 2006TC002064.
    Biq, C., 1972. Dual trench structure in the Taiwan-Luson region. Proc. Geol. Soc. China, 15, 65-75.
    Bowin, C., R.S. Lu, and C.S. Lee, 1978. Plate convergence and accretion in Taiwan-Luzon region. AAPG Bulletin, 62, 1645-1672.
    Byerlee, J. 1978 Friction of rocks. Pure and applied geophysics 116 (4 5), 615 626.
    Chai, H.T., 1972. Structure and tectonic evolution of Taiwan. Amer. Jour. Sci., 272, 389-422.
    Chang, L.S. 1962. A biostratigraphic study of the Oligocene in northern Taiwan based on smaller foraminifera Proc. Geol. Soc. China, 5, 47-64.
    Chen, C.H. and C.H. Wang, 1995. Explanatory notes for the metamorphic facies map of Taiwan. 51pp., 2nd ed., Centr. Geol. Surv. Spec. Publ. 2, MOEA., Taiwan, R.O.C..
    Chi, W.C, and D. Reed, 2007. Evolution of shallow crustal thermal structure from subduction to collision: An example from Taiwan. Geological Society of America Bulletin.
    Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., and Morris, A. P. (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9 (5), 1 8.
    Fry, N., 1999. Striated faults: visual appreciation of their constraint on possible paleostress tensors. Journal of Structural Geology, 21, 7-22.
    Funato, A., and Q. Chen, 2005. Initial stress evaluation by boring core deformation method [in Japanese]. In Proceedings of the 34th Symposium on Rock Mechanics, JSCE, pp.261-266.
    Funato, A., T. Ito, and T. Shono, 2012. Laboratory verification of the Diametrical Core Deformation Analysis (DCDA) developed for in-situ stress measurements. In Proceeding of the 46th US Rock Mechanics Geomechanics Symposium, Chicago, ARMA, 12-588.
    Geochemical Education Office 2005. http://www.geochemicalmaria.org
    Gephart, J.W. and D.W. Forsyth, 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: an application to the San Fernando earthquake sequence. J. Geophys. Res., 89, 9305-9320.
    Ho, C.S., 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16.
    Ho, C.S., 1988. An Introduction to the Geology of Taiwan-Explanatory Text of the Geologic Map of Taiwan. 163pp. 2nd ed. Centr. Geol. Surv., MOEA., Taipei, Taiwan, R.O.C..
    Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C. Chen, H. Y. 2009. Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. doi: DOI 10.1016/j.tecto.2008.11.016
    Huang, C.Y., P. B. Yuan, and S.J. Tsao, 2006. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3), 274-288.
    Huang, H.-H., Shyu, J. B. H., Wu, Y.M., Chang, C.H., and Chen, Y. G., 2012. Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension Journal of Geophysical Research: Solid Earth, 117, B01313.
    IEA 2007. Key World Energy Statistics 2007:http://www.iea.org/textbase/nppdf/free/2007/key_stats_2007.pdf
    IPCC 2007. : https://www.ipcc.ch/
    Jolly, R.J.H. and D.J. Sanderson, 1997. A Mohr circle construction for the opening of a pre-existing fracture. J.Stru.Geol, 19, 887-892.
    Kang, C.-C., Chang, C.-P., Siame, L., and Lee, J.-C., 2015, Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. Journal of Asian Earth Sciences, 105, 408-417
    Lee, C.R. and W.T. Cheng, 1986. Preliminary heat flow measurements in Taiwan: presented at the Fouth Circum-Pacific Energy and Mineral Resources Conference, Singapore.
    Liang, W. T., Lee, J. C., & Kuo, B. Y. 2005. Left-Lateral Strike-Slip Faulting in Ilan Lateral Extrusion at the Transition between Taiwan Mountain Range and the Okinawa Trough. Geodynamics and Enviromental in Asia International Conference and 5th Taiwan-France Earth Science Symposium.
    Lin, W.R., M. Kwasniewski, T. Imamura, and K. Matsuki, 2006. Determination of three-dimensional in-situ stresses from anelastic strain recovery measurement of cores at great depth. Tectonophysics, 426, 221-238.
    Lisle, R.J., T. Orife, and L. Arlegui, 2001. A stress inversion method requiring only fault slip sense. Journal of Geophysics Research, 106, 2281-2289.
    Meier,P.M., Rodríguez, A.A. and Bethmann, 2015. Lessons Learned from Basel: New EGS Projects in Switzerland Using Multistage Stimulation and a Probabilistic Traffic Light System for the Reduction of Seismic Risk Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25.
    Michael, A. J., 1987. Use of focal mechanisms to determine stress: a control study. J. Geophys. Res, 92, 357-368.
    MIT 2006. The Future ofGeothermal Energy:IMPact of Enhanced Geothermal Systems(EGS) on the United States in the 21stCentury:http://geothermal.inel.gov andhttp://www1.eere.energy.gov/geothermal/egs_technology.html
    Morris, A., Ferrill, D. A., and Henderson, D. B. (1996) Slip tendency analysis and fault reactivation. Geology 24 (3), 275 278.
    Nemcok, M. D. Kovac, and R.J. Lisle, 1999. Stress inversion procedure for polyphase calcite twin and fault slip data sets. Journal of Structural Geology 21, 597–611.
    Nemcok, M., and R.D. Lisle, 1995. A stress inversion procedure for polyphase fault/slip data sets. Journal of Structural Geology 17, 1445–1453.
    OECD/IEA 2011. Technology Roadmap-Geothermal Heat and Power.
    Rau, R.J., K.E. Ching, J.C. Hu, and J.C. Lee, 2008. Crustal deformation and block kinematics in transition from collision to subduction: Global positioning system measurements in northern Taiwan, 1995-2005. J. Geophys. Res., 113, B09404, doi:10.1029/2007JB005414
    Sclater, J. G., Jaupart, C. and Galson, D. 1980. The heat flow through oceanic and continental crust andthe heat loss of the Earth Rev. Geophys., 18(1), 269-311.
    Sella, G.F., T.H. Dixon, and A. Mao, 2002. REVEL: a model for recent plate velocities from space geodesy. J. Geophys. Res., 107, 2081, dai:10.1029/2000JB000033.
    Seno, T., S. Stein, and A.E. Gripp, 1993. A model for the motionof the Philippine Sea plate consistent with NUVEL-1 and geological data. J. Geophy. Res., 98, 17941-17948.
    Shan, Y., H. Suen, and G. Lin, 2003. Separation of polyphase fault/slip data: an objective-function algorithm based on hard division. Journal of Structural Geology 25, 829–840.
    Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89.
    Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21-33.
    Tai, P.C. and Teng, L.S. 1994. Sequence stratigraphic analysis of the Oligocene strata, northern Taiwan. J. Geol. Soc. China, 37(4), 607-640
    Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
    Teng, L. S., 1996, Extensional collapse of the northern Taiwan mountain belt: Geology, v. 24, no. 10, p. 949-952.
    Teng, L.S., C.T. Lee, Y.B. Tsai, and L.Y. Hsiao, 2000. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology (Boulder), vol.28, no.2, pp.155-158.
    Tester, J.W., Brown, D.W. and Potter, R.M. 1989. Hot Dry Rock Geothermal Energy –A New EnergyAgenda for the 21th Century Los Alamos National Laboratory Report LA-11514-MS.
    Tester, J. W., Anderson, B. J., Batchelor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M., and Nichols, K., 2006, The future of geothermal energy: IMPact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology, Cambridge, MA, p. 372.
    Tong, L.-T., Ouyang, S., Guo, T.-R., Lee, C.-R., Hu, K.-H., Lee, C.-L., and Wang, C.-J., 2008, Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan. Terrestrial, Atmospheric Oceanic Sciences, 19, no. 4, 413-424.
    Tsao, S., T.C. Li, J.L. Tien, C.H. Chen, T.k. Liu, and C.H. Chen, 1993. Illite crystallinity and fission-track ages along the east Central Cross-Island Highway of Taiwan. Acta Geol. Taiwan., 30, 65-94.
    Tsao, S., E. Law, H.C. Ho, Y.H. Lee, W.T. Jiang, and C.H. Chen, 1998. The geology significances of K-Ar ages of metapellites from the Central Range. Taiwan, Bull. Central Geol. Survey, 11, 37-84.
    Wu. Y.M., L. Zhao, C.H. Chang, and Y.J. Hsu, 2008. Focal mechanism determination in Taiwan by genetic algorithm. BSSA, 98, 651-661.
    Yabe, Y., S.R. Song, and C.Y. Wang, 2008. In-situ at the northern portion of the Chelungpu fault, Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP. Earth Planets Space, 60, 809-819.
    Wyss, R., and Rybach, L., “Rybach,Developing Deep Geothermal Resources in Switzerland,” Proceedings of the 2010 World Geothermal Congress, Bali, Indonesia, p.4, 2010.
    Yamaji, A., 2000. The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology 22, 441–452.
    Yeh, Y., Lin, C.-H., and Roecker, S. W., 1989, A study of upper crustal structures beneath northeastern Taiwan: possible evidence of the western extension of Okinawa trough. Proceedings of the Geological Society of China, 32, p139.
    Yen, T.P., 1963. The metamorphic belts within the Tananao schist terrain of Taiwan. Proceedings of the Geological Society of China, 6, 72-74.
    Yen, T.P., 1967. Structural Analysis of Tananao Schist of Taiwan. Bull. Geol. Surv. Taiwan, 21, 1-51.
    Yen T.P. 1973. The Eocene Sandstone in the Hsuehsan Range terrane, Northern Taiwan Proc. Geol. Soc. China, 7, 80-81.
    Yu, S.B., H.Y. Chen, and L.C. Kuo, 1995. Velocity field of GPS stations in the Taiwan area. International Conference and 3rd Sino-French Symposium on Active Collision in Taiwan, 22-23 March, 1995, Taipei, 317-327.
    Yu, S.B., H.Y. Chen and L.C. Kuo, 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
    Yui, T.F., 2005. Isotopic composition of carbonaceous material in metamorphic roks from the mountain belt of Taiwan. Int. Geol. Rev., 47, 610-625.
    Zoback, M.D., C.A. Barton, M. Brudy, D.A. Castillo, T. Finkbeiner, B.R. Grollimund, D.B. Moos, P. Peska, C.D. Ward, and D.J. Wiprut, 2003. Determination of stress orientation and magnitude in deep wells. Int. J. Rock Mech. Min. Sci. 40, 1049-1076.
    Zoback, M.D., 2007. Reservoir Geomechanics. Cambridge University Press, New York.

    下載圖示
    QR CODE