研究生: |
林琮鈞 Lin, Tsung-juin |
---|---|
論文名稱: |
探討1,6-脫水葡萄糖的位置選擇性和醣鍵結反應 Regioselective protection of 1,6–anhydro–glucopyranoside and its glycosylation reaction |
指導教授: |
王正中
Wang, Cheng-Chung 杜玲嫻 Tu, Ling-Hsien |
口試委員: |
王正中
Wang, Cheng-Chung 杜玲嫻 Tu, Ling-Hsien 羅順原 Luo, Shun-Yuan |
口試日期: | 2023/01/11 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 醣基化反應 、脫水醣 |
英文關鍵詞: | glycosylation, anhydro sugar |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300298 |
論文種類: | 學術論文 |
相關次數: | 點閱:88 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣化學為有機化學領域中重要的部分,不同的醣體會在生物表面上有不同的表現或是機制,深入了解醣在細胞表面扮演的角色有助於藥物發展以及疫苗開發。由於醣反應的特殊性以及結構的複雜性,這讓醣化學的發展受到阻礙。由於醣合成免不了繁雜的保護以及去保護過程因此本篇論文將討論具發展潛力的構建原件1,6-脫水-D-β-葡萄醣,1,6-脫水-D-β-葡萄醣上結構具有特殊的分子內自保護的鍵橋可以減少保護與去保護過程,加上不同於一般4C1醣體的1C4的構型,脫水醣上鍵橋對C3羥基造成立體結構使我們可以選擇性在C4上苄基和C2乙醯丙酸基保護。1,6-脫水-D-β-葡萄醣特殊的開環機制,提供了更多醣體在C1修飾的選擇,如接上疊氮後可以進行點擊化學反應等。最後修飾過後的1,6-脫水-D-β-葡萄醣能藉由立體構型選擇性與苷露醣予體進行 (1→3) 醣基化反應,而且C2、C4上不同的保護基也可以透過專一性去保護後得到的羥基進行 (1→2) 或 (1→4) 的選擇性醣基化反應,大幅增加醣基化反應路徑的多樣性。
Several glycans are prevalent at the surface of cells manifesting variety of functions making them to be targets of drug and vaccine development. To understand the mechanism of their functions, glycans of interest must be accessible in the required structural form and adequate quantity for biological assessments. To this end, chemical synthesis is one of the tools employed to access glycans. Due to structural complexity and diversity of glycans, their chemical synthesis needs a series of protection-deprotection procedures. Herein, we report the use of 1,6-anhydroglucose unit which consists of a special intramolecular self-protection bridge aimed at reducing the protectiondeprotection steps during glycan synthesis. Structurally, the 1,6-anhydro-D-β-glucoside has a 1C4 conformation which is different from the general 4C1 conformation of sugars. As the anhydro bridge creates a three-dimensional hindrance for the C3 OH group, the remaining two hydroxyl groups can be selectively modified with orthogonal protecting groups. In this case, while the C4 OH group was selectively benzylated, the C2 OH group was subjected to levulinoylaton. Then, the resulting 1,6-anhydro-D-β-glucoside can undergo (1→3) glycosylation reaction through the free C3 OH group with variety of glycoside donors to build disaccharides. Moreover, the orthogonal protecting groups at C2 and C4 can also be selectively removed to be used for (1→2) or (1→4) selective glycosylation which greatly increases the diversity of glycosylation reaction pathways.
(1) Garg, H. G.; Cowman, M. K.; Hales, C. A. Carbohydrate chemistry, biology and medical applications; Elsevier, 2011.
(2) (a) Hakomori, S.-I. Tumor-associated carbohydrate antigens. Annu. Rev. Immunol. 1984, 2 (1), 103-126 ;(b) McDonald, D. M.; Byrne, S. N.; Payne, R. J. Synthetic self-adjuvanting glycopeptide cancer vaccines. Front. Chem. 2015, 3, Mini Review.
(3) Lindhorst, T. K. Essentials of carbohydrate chemistry and biochemistry; John Wiley & Sons, 2007.
(4) Nomenclature of Carbohydrates, (Recommendations 1996). In Advances in Carbohydrate Chemistry and Biochemistry; Vol. 52; Academic Press, 1997; pp 44-177.
(5) (a) Bojarová-Fialová, P.; Křen, V. 1.12 - Enzymatic Approaches to O-Glycoside Introduction: Glycosidases. In Comprehensive Glycoscience; Elsevier, 2007; pp 453-487 ;(b) Park, S. S.; Hsieh, H.-W.; Gervay-Hague, J. Anomeric O-Functionalization of Carbohydrates for Chemical Conjugation to Vaccine Constructs. mol. 2018, 23 (7), 1742.
(6) Van der Vorm, S.; Hansen, T.; Overkleeft, H.; Van der Marel, G.; Codée, J. The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chem. Soc. 2017, 8 (3), 1867-1875.
(7) Wiberg, K. B.; Bailey, W. F.; Lambert, K. M.; Stempel, Z. D. The Anomeric Effect: It’s Complicated. J. Org. Chem. 2018, 83 (9), 5242-5255.
(8) (a) Hettikankanamalage, A. A.; Lassfolk, R.; Ekholm, F. S.; Leino, R.; Crich, D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem. Rev. 2020, 120 (15), 7104-7151. ; (b) Paulsen, H.; Herold, C.-P. Carboxoniumverbindungen in der Kohlenhydratchemie, X. Untersuchungen zur Acetoxonium-Umlagerung von D-Glucose zu D-Idose. Chem. Ber. 1970, 103 (8), 2450-2462.
(9) Hansen, T.; Elferink, H.; Van Hengst, J. M. A.; Houthuijs, K. J.; Remmerswaal, W. A.; Kromm, A.; Berden, G.; van der Vorm, S.; Rijs, A. M.; Overkleeft, H. S.; et al. Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions. Nat. Commun 2020, 11 (1), 2664.
(10) Mulani, S. K.; Hung, W.-C.; Ingle, A. B.; Shiau, K.-S.; Mong, K.-K. T. Modulating glycosylation with exogenous nucleophiles: an overview. Org. Biomol. Chem. 2014, 12 (8), 1184-1197,.
(11) Chatterjee, D.; Paul, A.; Rajkamal; Yadav, S. Cu(ClO4)2·6H2O catalyzed solvent free per-O-acetylation and sequential one-pot conversions of sugars to thioglycosides. RSC Advances 2015, 5 (38).
(12) Chaidam, S.; Saehlim, N.; Athipornchai, A.; Sirion, U.; Saeeng, R. Synthesis and biological evaluation of 1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment of Type 2 diabetes. Bioorg. Med. Chem. Lett. 2021, 50, 128331.
(13) Fernández-Herrera, M. A.; Mohan, S.; López-Muñoz, H.; Hernández-Vázquez, J. M. V.; Pérez-Cervantes, E.; Escobar-Sánchez, M. L.; Sánchez-Sánchez, L.; Regla, I.; Pinto, B. M.; Sandoval-Ramírez, J. Synthesis of the steroidal glycoside (25R)-3β,16β-diacetoxy-12,22-dioxo-5α-cholestan-26-yl β-d-glucopyranoside and its anti-cancer properties on cervicouterine HeLa, CaSki, and ViBo cells. Eur. J. Med. Chem. 2010, 45 (11), 4827-4837.
(14) Xu, H.; Lu, Y.; Zhou, Y.; Ren, B.; Pei, Y.; Dong, H.; Pei, Z. Regioselective Benzylation of Diols and Polyols by Catalytic Amounts of an Organotin Reagent. Adv. Synth. Catal. 2014, 356 (8), 1735-1740.
(15) Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Regioselective one-pot protection of carbohydrates. Nature 2007, 446 (7138), 896-899.
(16) Tanret, C. Bull. SOC. Chim. Fr. 1894, 11, 949-955.
(17) A. Pictet, J. S. Helv. Chim. Acta. 1918, 1, 87-96.
(18) Matsuda, S.; Matsumura, K.; Watanabe, M.; Yamanoi, T. Synthesis of a partially benzylated derivative of the anhydro-d-altro-heptulose found in Coriaria japonica A. Tetrahedron Lett. 2007, 48 (33), 5807-5810.
(19) Mascitti, V.; Maurer, T. S.; Robinson, R. P.; Bian, J.; Boustany-Kari, C. M.; Brandt, T.; Collman, B. M.; Kalgutkar, A. S.; Klenotic, M. K.; Leininger, M. T.; et al. Discovery of a Clinical Candidate from the Structurally Unique Dioxa-bicyclo[3.2.1]octane Class of Sodium-Dependent Glucose Cotransporter 2 Inhibitors. J. Med. Chem. 2011, 54 (8), 2952-2960.
(20) Oudenhoven, S. R. G.; Westerhof, R. J. M.; Aldenkamp, N.; Brilman, D. W. F.; Kersten, S. R. A. Demineralization of wood using wood-derived acid: Towards a selective pyrolysis process for fuel and chemicals production. J. Anal. Appl. Pyrolysis 2013, 103, 112-118.
(21) Itabaiana Junior, I.; Avelar do Nascimento, M.; de Souza, R. O. M. A.; Dufour, A.; Wojcieszak, R. Levoglucosan: a promising platform molecule? Green Chem. 2020, 22 (18), 5859-5880.
(22) Kulkarni, S. S.; Lee, J.-C.; Hung, S.-C. Recent Advances in the Applications of D- and L-Form 1,6- Anhydrohexopyranoses for the Synthesis of Oligosaccharides and Nature Products. Curr. Org. Chem. 2004, 8 (6), 475-509.
(23) Fujimaki, I.; Ichikawa, Y.; Kuzuhara, H. A modified procedure for the synthesis of 1,6-anhydro disaccharides. Carbohydr. Res. 1982, 101 (1), 148-151.
(24) (a) Tanaka, T.; Huang, W. C.; Noguchi, M.; Kobayashi, A.; Shoda, S.-i. Direct synthesis of 1,6-anhydro sugars from unprotected glycopyranoses by using 2-chloro-1,3-dimethylimidazolinium chloride. Tetrahedron Lett. 2009, 50 (18), 2154-2157 ; (b) Fairbanks, A. J. Applications of Shoda's reagent (DMC) and analogues for activation of the anomeric centre of unprotected carbohydrates. Carbohydr. Res. 2021, 499, 108197.
(25) Micheel, F.; Brodde, O.-E.; Reinking, K. Versuche zur Polykondensation von 2,3,6-Tri-O-benzyl-D-glucopyranose und Polymerisation von 1,4-Anhydro-2,3,6-tri-O-benzyl-α-D-glucopyranose. Liebigs Ann. 1974, 1974 (1), 124-136.
(26) Schmidt, R. R.; Michel, J.; Rücker, E. α-Glucosidasen-Inhibitoren, 6. Synthese von 1,6-Anhydro-D-glucose- und -D-galactose-Derivaten Herstellung des 1-Desoxynojirimycins. Liebigs Ann. 1989, 1989 (5), 423-428.
(27) Åberg, P.; Ernst, B. Facile preparation of 1, 6-anhydrohexoses using solvent effects and a catalytic amount of a Lewis acid. Acta Chem. Scand. 1994, 48, 228-228.
(28) Sondheimer, S. J.; Eby, R.; Schuerch, C. A synthesis of 1,6-anhydro-2,3,4-tri-O-benzyl-β-D-mannopyranose. Carbohydr. Res., 1978, 60 (1), 187-192.
(29) Georges, M.; Fraser-Reid, B. A simple, one-flask, two-step synthesis of 1,6-anhydro-β-D-mannopyranose (D-mannosan) from D-mannose. Carbohydr. Res., 1984, 127 (1), 162-164.
(30) Lafont, D.; Boullanger, P.; Cadas, O.; Descotes, G. A Mild Procedure for the Preparation of 1,6-Anhydro-β-D-hexopyranoses and Derivatives. Synth. 1989, 1989 (03), 191-194.
(31) Lauer, G.; Oberdorfer, F. A Simple Route from Glucal to Cerny Epoxides. Angew. Chem. Int. 1993, 32 (2), 272-273.
(32) Mereyala, H. B.; Venkataramanaiah, KC; Dalvoy, VS. Carbohydr. Res. 1992, 225, 151-153.
(33) MEREYALA, H. B.; Venkataramanaiah, K. A new general route to the synthesis of [3.2. 1] bicyclic synthons from glycals. J. Chem. Res. (S)
1991, 197.
(34) Hazelard, D.; Compain, P. Nucleophilic Ring-Opening of 1,6-Anhydrosugars: Recent Advances and Applications in Organic Synthesis. Eur. J. Org. Chem. 2021, 2021 (24), 3501-3515.
(35) Shi, H.; Zhou, B.; Li, W.; Shi, Z.; Yu, B.; Wang, R. Synthesis and anti-tumor activities of methyl 2-O-aryl-6-O-aryl-D-glucopyranosides. Bioorg. Med. Chem. Lett. 2010, 20 (9), 2855-2858.
(36) Kato, T.; Vasella, A.; Crich, D. Stereospecific synthesis of methyl 2-amino-2-deoxy-(6S)-deuterio-α,β-D-glucopyranoside and methyl 2,6-diamino-2,6-dideoxy-(6R)-deuterio-α,β-D-glucopyranoside: Side chain conformations of the 2-amino-2-deoxy and 2,6-diamino-2,6-dideoxyglucopyranosides. Carbohydr. Res. 2017, 448, 10-17.
(37) Wang, J.; Li, J.; Czyryca, P. G.; Chang, H.; Kao, J.; Tom Chang, C.-W. Synthesis of an unusual branched-chain sugar, 5-C-methyl-l-idopyranose for SAR studies of pyranmycins: implication for the future design of aminoglycoside antibiotics. Bioorg. Med. Chem. Lett. 2004, 14 (17), 4389-4393.
(38) Burke, S. D.; Voight, E. A. Formal Synthesis of (+)-3-Deoxy-D-glycero-D-galacto-2-nonulosonic Acid (KDN) via Desymmetrization by Ring-Closing Metathesis. Org. Lett. 2001, 3 (2), 237-240.
(39) Mikkelsen, L. M.; Krintel, S. L.; Barbero, J. J.; Skrydstrup, T. A highly convergent synthesis of a branched C-trisaccharide employing a double SmI2-promoted C-glycosylation. Chem. Commun. 2000, 2319-2320
(40) Zhu, X.; Dere, R. T.; Jiang, J.; Zhang, L.; Wang, X. Synthesis of α-glycosyl thiols by stereospecific ring-opening of 1, 6-anhydrosugars. J. Org. Chem. 2011, 76 (24), 10187-10197.
(41) Lepage, M. L.; Bodlenner, A.; Compain, P. Stereoselective Synthesis of α-Glycosyl Azides by TMSOTf-Mediated Ring Opening of 1,6-Anhydro Sugars. Eur. J. Org. Chem. 2013, 2013 (10), 1963-1972.
(42) St-Gelais, J.; Denavit, V.; Giguère, D. Efficient synthesis of a galectin inhibitor clinical candidate (TD139) using a Payne rearrangement/azidation reaction cascade. Org. Biomol. Chem. 2020, 18 (20), 3903-3907
(43) Morrone-Pozzuto, P.; Uhrig, M. L.; Agusti, R. Trypanosoma cruzi trans-sialidase alternative substrates: Study of the effect of substitution in C-6 in benzyl β-lactoside. Carbohydr. Res. 2019, 478, 33-45.
(44) Černý, M.; Staněk, J. 1,6-Anhydro Derivatives of Aldohexoses. In Advances in Carbohydrate Chemistry and Biochemistry, Stuart Tipson, R., Horton, D. Eds.; Vol. 34; Academic Press, 1977; pp 23-177.
(45) Iversen, T.; Bundle, D. R. Synthesis of the colitose determinant of Escherichia coli O111 and 3, 6-di-O-(α-D-galactopyranosyl)-α-D-glucopyranoside. Can. J. Chem. 1982, 60 (3), 299-303.
(46) Cruzado, M. C.; Martin-Lomas, M. The regioselectivity of tributyltin ether-mediated benzylation of 1, 6-anhydro-β-D-hexoipyranoses. Carbohydr. Res. 1988, 175 (2), 193-199.
(47) Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides. J. Am. Chem. Soc. 1988, 110 (16), 5583-5584.
(48) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999, 121 (4), 734-753.
(49) Sinnott, M. L. Catalytic mechanism of enzymic glycosyl transfer. Chem. Rev. 1990, 90 (7), 1171-1202.
(50) Fraser-Reid, B.; Wu, Z.; Udodong, U. E.; Ottosson, H. Armed/disarmed effects in glycosyl donors: rationalization and sidetracking. J. Org. Chem. 1990, 55 (25), 6068-6070.
(51) GlycoComputer, http://chemwww.chem.sinica.edu.tw/ChemicalGlycosylation/index.php.
(52) Chang, C.-W.; Lin, M.-H.; Chan, C.-K.; Su, K.-Y.; Wu, C.-H.; Lo, W.-C.; Lam, S.; Cheng, Y.-T.; Liao, P.-H.; Wong, C.-H.; et al. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew. Chem. Int. 2021, 60 (22), 12413-12423.
(53) Chang, C.-W.; Wu, C.-H.; Lin, M.-H.; Liao, P.-H.; Chang, C.-C.; Chuang, H.-H.; Lin, S.-C.; Lam, S.; Verma, V. P.; Hsu, C.-P.; et al. Establishment of Guidelines for the Control of Glycosylation Reactions and Intermediates by Quantitative Assessment of Reactivity. Angew. Chem. Int. 2019, 58 (47), 16775-16779.
(54) Chang, C. W.; Lin, M. H.; Chan, C. K.; Su, K. Y.; Wu, C. H.; Lo, W. C.; Lam, S.; Cheng, Y. T.; Liao, P. H.; Wong, C. H. Automated quantification of hydroxyl reactivities: prediction of glycosylation reactions. Angew. Chem. Int. 2021, 60 (22), 12413-12423.
(55) Ko, Y.-C.; Tsai, C.-F.; Wang, C.-C.; Dhurandhare, V. M.; Hu, P.-L.; Su, T.-Y.; Lico, L. S.; Zulueta, M. M. L.; Hung, S.-C. Microwave-assisted one-pot synthesis of 1, 6-anhydrosugars and orthogonally protected thioglycosides. J. Am. Chem. Soc. 2014, 136 (41), 14425-14431.
(56) Uchiyama, T.; Hindsgaul, O. Per-O-trimethylsilyl-α-l-fucopyranosyl iodide: a novel glycosylating agent for terminal α-l-fucosylation. Synlett 1996, 1996 (06), 499-501.
(57) Joseph, A. A.; Verma, V. P.; Liu, X.-Y.; Wu, C.-H.; Dhurandhare, V. M.; Wang, C.-C. TMSOTf-Catalyzed Silylation: Streamlined Regioselective One-Pot Protection and Acetylation of Carbohydrates. Eur. J. Org. Chem. 2012, 2012 (4), 744-753.
(58) Kaga, H.; Enomoto, M.; Shimizu, H.; Nagashima, I.; Matsuda, K.; Kawaguchi, S.; Narumi, A. Microwave-assisted heating reactions of N-acetylglucosamine (GlcNAc) in sulfolane as a method generating 1, 6-anhydrosugars consisting of amino monosaccharide backbones. mol. 2020, 25 (8), 1944.
(59) Satoh, T.; Imai, T.; Ishihara, H.; Maeda, T.; Kitajyo, Y.; Sakai, Y.; Kaga, H.; Kaneko, N.; Ishii, F.; Kakuchi, T. Synthesis, Branched Structure, and Solution Property of Hyperbranched D-Glucan and D-Galactan. Macromolecules 2005, 38 (10), 4202-4210.
(60) Ye, C.-H., thesis "Total synthesis of Campylobacter jejuni NCTC11168 Capsular Polysaccharide via Intramolecular Anomeric Protection Strategy" ; unpublished result