研究生: |
吳心蕙 |
---|---|
論文名稱: |
穿膜蛋白質之結構預測 |
指導教授: | 陳啟明 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 視網膜蛋白 、穿膜蛋白質 、蒙地卡羅演算法 、分子動力學模擬 、蛋白質摺疊 |
英文關鍵詞: | retinal protein, transmembrane protein, Monte Carlo Algorithm, Molecular Dynamics Simulation, protein folding |
論文種類: | 學術論文 |
相關次數: | 點閱:517 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
穿膜蛋白對於維持細胞間的正常運作具有極大的影響性,但因其難以利用X-ray晶體繞射來獲得高解析度的蛋白質結構,使進行原子等級的動力學研究相當不易。而因為穿膜蛋白位於脂質膜中的結構特性,與近代電腦演算能力的大幅躍進,使得電腦模擬成為研究蛋白質摺疊動力學的一大利器。
我們自PDB資料庫中匯出兩種retinal proteins-bacteriorhodopsin (BRD)和halorhodopsin (HRD) 結構中的七根穿膜螺旋之胺基酸序列,並配合AMBER套裝軟體演算出適合的二級結構,並取出其中的Cα原子座標來做為我們模型中的α螺旋結構。隨後將得到的七根螺旋結構隨機地插入雙層膜的模擬環境中,再計算模型中螺旋與環境及螺旋與螺旋間的交互作用,並配合蒙地卡羅演算法來獲得一具有最低能量且和PDB原始結構相似的穿膜蛋白質結構。在我們所得的預測結果和PDB原始結構間的均方根偏差值 (RMSD) 部分, BRD 和HRD的模擬結構分別為5.03 Å和6.70 Å。
爾後為了改進模型在預測傾斜角與方位角準度較差的部份,我們在補足結構中所有其他原子後,配合AMBER套裝軟體來進行10 ns的分子動力學模擬。在BRD與HRD的部份皆有效地降低傾斜角、方位角與PDB結構間的差異度,並同時將RMSD值分別降為4.38 Å和5.70 Å。
Although transmembrane proteins have crucial influence for maintaining the normal functions of cells, it’s still lack of their high resolution 3D structures due to the technology requirements of X-ray diffraction crystallography. Therefore the progress of studying their dynamic systems in atomic level is slow. But because of the structural property in lipid membrane and considerable progress in computational technique, it’s comparatively convenient to use computer simulations as a tool of protein folding dynamics research.
First of all, we took amino acid sequences of 7 transmembrane helices in bacteriorhodopsin (BRD) and halorhodopsin (HRD) from Protein Data Bank (PDB). Then use AMBER suit software to get the proper secondary structures with desired sequence. After this, we selected all the Cα atoms from them and constructed a Cα-backbone off-lattice model, which means that 7 α helices were randomly inserted into simulated lipid bilayer and they can move free conditionally in the environment. Then we calculated the interaction energy between helices and environment in our model and cooperate with Monte Carlo algorithm to obtain predicted structure with the lowest energy which is also PDB native structure-like. The root mean square deviation (RMSD) between PDB structure and our predicted structure is 5.03 Å for BRD and 6.70 Å for HRD.
To make up the deficiency in predicting tilting angle and orientation angle, we used AMBER suit software again to construct an all-atom model and ran Molecular Dynamics Simulations for 10 ns. The difference in angles between PDB and predicted structure is decreased effectively for both BRD and HRD. And at the mean time RMSD is also reduced to 4.38 Å and 5.70 Å respectively。
Abraham, M. H., Zhao, Y. H., & Zissimos, A. M. (2003) Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. The Journal of Organic Chemistry, 68(19), 7368-7373.
Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science, 181(96), 223-230.
Armitage, J. P., Grishanin, R. N., Bibikov, S. I., Altschuler, I. M., Kaulen A. D., Kazimirchuk, S. B. , & Skulachev V. P., Bacteriol, J. (1996) delta psi-mediated signalling in the bacteriorhodopsin-dependent photoresponse. Journal of Bacteriology, 178(11), 3008-3114.
Baginski, M., Resat, H., & Borowski, E. (2002) Comparative molecular dynamics simulations of amphotericin B–cholesterol/ergosterol membrane channels. Biochimica et Biophysica Acta, 1567, 63-78.
Baker, D., Yarov-Yarovoy, V., & Schonbrun, J. (2006) Multipass membrane protein structure prediction using Rosetta. PROTEINS: Structure, Function, and Bioinformatics, 62, 1010–1025.
Ben-Tal, N., & Fleishman, S. J. (2002) A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane α-helices. Journal of Molecular Biology, 321, 363-378.
Bibikov, S. I., Grishanin, R. N., Kaulen, A. D., Marwan, W., Oesterhelt, D., & Skulachev, V. P. (1993) Bacteriorhodopsin is involved in halobacterial photoreception. Proceedings of the National Academy of Sciences of the United States of America, 90(20), 9446-9450.
Biggin, P. C., Breed, J., Son, H. S., Sansom, M. S. (1997) Simulation studies of alamethicin-bilayer interactions. Biophysical Journal, 72, 627-636.
Bowie, J. U. (1997) Helix packing in membrane proteins. Journal of Molecular Biology,272, 780-789.
Bowie, J. U., Faham, S., Yang, D., Bare, E., Yohannan, S., & Whitelegge, J. P. (2004). Side-chain contributions to membrane protein structure and stability. Journal of Molecular Biology,335, 297-305.
Bowie, J. U. (2005) Solving the membrane protein folding problem. Nature, 438, 581-589.
Chen, C.-M., & Chen, C.-C. (2003) Computer simulations of membrane protein folding: Structure and dynamics. Biophysical Journal, 84, 1902–1908.
Chen, C.-M., Chen, C.-C., Wei, C.-C., & Sun, Y.-C. (2008) Packing of transmembrane helices in bacteriorhodopsin folding: Structure and thermodynamics. Journal of Structural Biology, 162, 237-247.
Chen, C.-M., & Chen, C.-C. (2009) A dual-scale approach toward structure prediction of retinal proteins. Journal of Structural Biology, 165, 37-46.
de Pablo, J., Rathore, N., & Chopra, M. (2005) Optimal allocation of replicas in parallel tempering simulations. The Journal of Chemical Physics, 122, 024111-024111-8.
Earl, D. J., & Deem, M. W. (2005) Parallel tempering: Theory, applications, and new perspectives. Physical Chemistry Chemical Physics, 7, 3910-3916.
Essen, L.-O., Siegert, R., Lehmann, W. D., & Oesterhelt, D. (1998). Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex. Biophysics, 95, 11673-11678.
Essen, L.-O., Kolbe, M., Besir, H., & Oesterhelt, D. (2000). Structure of the light-driven chloride pump halorhodopsin at 1.8Å resolution. Science, 288, 1390-1396.
Falcioni, M., & Deem, M. W. (1998) A biased Monte Carlo scheme for zeolite structure solution. The Journal of Chemical Physics, 110, 1754-1766.
Fleishman, S. J., Harrington, S., Friesner, R. A., Honig, B., Ben-Tal, N. (2004) An automatic method for predicting transmembrane protein structures using cryo-EM and evolutionary data. Biophysical Journal, 87, 3448–3459.
Fleming, K. G. (2000) Riding the wave: Structural and energetic principles of helical membrane proteins. Current opinion in biotechnology, 11(1), 67-71.
Geyer, C. J. (1992) Practical Markov chain Monte Carlo. Statistical Science, 7, 473-483.
Goddard III, W. A., Vaidehi, N., Floriano, W. B., Trabanino, R., Hall, S. E., Freddolino, P., Choi, E. j., & Zamanakos, G. (2002) Prediction of structure and function of G protein-coupled receptors. Biological Sciences - Applied Biological Sciences, 99(20), 12622-12627.
Hansmann, U. (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chemical Physics Letters, 281, 140-150.
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., & Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of Molecular Biology, 213(4), 899-929.
Kessel, A., & Ben-Tal, N. (2002) Free energy determinants of peptide association with lipid bilayers. In S. Simon & T. McIntosh (Eds.) Peptide-Lipid Interactions. (Vol. 52, pp. 205-253). San Diego: Academic Press.
Kessel, A., Shental-Bechor, D., Haliloglu, T., & Ben-Tal, N. (2003) Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2δ. Biophysical Journal, 85, 3431-3444.
Kimura, Y., Vassylyev, D. G., Vassylyev, A., Kidera, A., Matsushima, K., Mitsuoka, K., Murata, K., Hirai, T., & Fujiyoshi, Y. (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature, 389, 206-211.
Kofke, D. A. (2002). On the acceptance probability of replica-exchange Monte Carlo trials. The Journal of Chemical Physics, 117(15), 6911-6914.
Kokubo, H., & Okamoto, Y. (2004) Self-assembly of transmembrane helices of bacteriorhodopsin by a replica-exchange Monte Carlo simulation. Chemical Physics Letters, 392, 168-175.
Kokubo, H., & Okamoto, Y. (2009) Analysis of helix-helix interactions of bacteriorhodopsin by replica-exchange simulations. Biophysical Journal, 96, 765-776.
Kone, A., & Kofke, D. A. (2005) Selection of temperature intervals for parallel-tempering simulations. The Journal of Chemical Physics, 122, 206101- 206101-2.
Konings, W. N., Veld, G. I., Driessen, A. J. M., & Op den Kamp, J. A. F. (1991) Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus latics. Biochimica et Biophysica Acta, 1065, 203-212.
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305, 567-580.
Kyte, J., & Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105-132.
La Rocca, P., Shai, Y., & Sansom, M. S. (1999) Peptide-bilayer interactions: Simulations of dermaseptin B, an antimicrobial peptide. Biophysical Chemistry, 76(2), 145-159.
Liang, J., Adamian, L., Nanda, V., & DeGrado, W. F. (2005) Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. PROTEINS: Structure, Function, and Bioinformatics, 59, 496-509.
Liu, J.-F., & Rost, B. (2001) Comparing function and structure between entire proteomes. Protein Science, 10, 1970-1979.
Luecke, H., Richter, H.-T., & Lanyi, J. K. (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937.
Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., & Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. Journal of Molecular Biology, 291, 899-911.
Luecke, H. (2000) Atomic resolution structures of bacteriorhodopsin photocycle intermediates: The role of discrete water molecules in the function of this light-driven ion pump. Biochimica et Biophysica Acta (BBA), 1460, 133-156.
MacKenzie, K. R., & Fleming, K. G. (2008) Association energetics of membrane spanning α-helices. Current Opinion in Structural Biology, 18, 412-419.
McLean, L. R., Hagaman, K. A., Owen, T. J., & Krstenansky, J. L. (1991) Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes. Biochemistry, 30(1), 31-37.
Metropolis, N., & Ulam, S. (1949) The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335-341.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953) Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
Metropolis, N (1987) The beginning of the Monte Carlo method. In Los Alamos Science Special Issue 1987 : Stanislaw Ulam 1909-1984.(15).
Milik, M., & Skolnick, J. (1993) Insertion of peptide chains into lipid membranes: An off-lattice Monte Carlo dynamics model. Proteins, 15(1), 10-25.
Mitaku, S., Suwa, M., & Hirokawa, T. (1995) A continuum theory for the prediction of lateral and rotational positioning of α-helices in membrane proteins: Bacteriorhodopsin. Proteins: Structure, Function, and Genetics, 22(4), 363-377.
Mitaku, S., Hirokawa, T., Uechi, J., Sasamoto, H., & Suwa, M. (2000) A triangle lattice model that predicts transmembrane helix configuration using a polar jigsaw puzzle. Protein Engineering, 13(11), 771-778.
Mitsutake, A., Kinoshita, M., Okamoto, Y., & Hirata, F. (2004) Combination of the replica-exchange Monte Carlo method and the reference interaction site model theory for simulating a peptide molecule in aqueous solution. The Journal of Physical Chemistry B, 108, 19002-19012.
Mitsutake, A., & Okamoto, Y. (2004) Replica-exchange extensions of simulated tempering method. The Journal of Chemical Physics, 21(6), 2491-2504.
Nina, M., Roux, B., & Smith, J. C. (1995) Functional interactions in bacteriorhodopsin: A theoretical analysis of retinal hydrogen bonding with water. Biophysical Journal, 68, 25-39.
Nolting, B. (c2006) Protein folding kinetics : biophysical methods. New York : Springer.
Pebay-Peyroula, E., Belrhali, H., Nollert, P., Royant, A., Menzel, C, G., Rosenbusch, J. P., & Landau, E. M. (1999) Protein, lipid and water organization in bacteriorhodopsin crystals a molecular view of the purple membrane at 1.9Å resolution. Structure, 7(8), 909-917.
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., & Landau, E. M. (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 277, 1676-1681.
Popot, J.-L., & Engelman, D. M. (1990) Membrane protein folding and oligomerization: The two-stage model. Biochemistry, 29(17), 4031-4037.
Popot, J.-L., & Engelman, D. M. (2000) Helical membrane protein folding, stability, and evolution. Annual Review of Biochemistry, 69, 881-922.
Richards, F.M. (1974) The interpretation of protein structures: total volume, group volume distributions and packing density. Journal of Molecular Biology, 82(1), 1-14.
Smith, J. C., Baudry, J., Crouzy, S., & Roux, B. (1999) Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin. Biophysical Journal, 76(4), 1909-1917.
Sugihara, G., Kiyota, T., & Lee, S. (1996). Design and synthesis of amphiphilic α-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry, 35(40), 13196-131204.
Sugita, Y., & Okamoto, Y. (1999) Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314, 141-151.
Swendsen, R. H., & Wang, J.-S. (1986) Replica Monte Carlo simulation of spin-glasses. Physical Review Letters, 57(21), 2607-2609.
Tittor, J., Gmelin, W. , Zeth, K., Efremov, R., Heberle, J., & Oesterhelt, D. (2007) The crystal structure of the L1 intermediate of halorhodopsin at 1.9 Å resolution. Photochemistry and Photobiology, 83, 369-377.
Tsong, T. Y. (1990) Electrical modulation of membrane proteins: Enforced conformational oscillations and biological energy and signal transductions. Annual Review of Biophysics and Biophysical Chemistry, 19, 83-106.
Ulmschneider, M. B., Sansom, M. S. P., & Di Nola, A. (2005) Properties of integral membrane protein structures: Derivation of an implicit membrane potential. PROTEINS: Structure, Function, and Bioinformatics, 59, 252-265.
White, S. H., & Wimley, W. C. (1999) Membrane protein folding and stability: Physical principles. Annual Review of Biophysics and Biomolecular Structure, 28, 319-365.
White, S. (2009). Membrane proteins of known 3D structures. Retrieved May 15, 2009, from UC Irvine, Steven White laboratory Web site: http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html#Latest