簡易檢索 / 詳目顯示

研究生: 吳宗儒
Wu, Tsung-Ju
論文名稱: 探討學生數學學習中意動與認知、情意間的交響協作:以奠基活動為例
Investigate the orchestration of conation, cognition and affect in students' mathematics learning: The case of Mathematics Grounding Activity
指導教授: 林福來
Lin, Fou-Lai
楊凱琳
Yang, Kai-Lin
口試委員: 林原宏
Lin, Yuan-Horng
邱美秀
Chiu, Mei-Shiu
左台益
Tso, Tai-Yih
林福來
Lin, Fou-Lai
楊凱琳
Yang, Kai-Lin
口試日期: 2025/03/06
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 502
中文關鍵詞: 意動認知情意覺動理論數學奠基模組
英文關鍵詞: conation, cognition, affect, enactivism, mathematics grounding activity
研究方法: 個案研究法半結構式訪談法
論文種類: 學術論文
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在學生進行數學學習的過程中,認知與情意同時都扮演了相當重要的角色,兩者之間會進行交互作用影響學生的數學學習,因此在研究與實務面向上同時希望兩者都能夠正向發展,然而在國際評比中卻有高成就、低興趣這樣一個現象,這個現象需要且有證據顯示可以被解決,而在臺灣,國立臺灣師範大學數學教育中心在教育部的補助下執行「就是要學好數學(Just Do Math)」計畫,在該計畫中產出許多數學奠基模組以期望學生在該模組的學習過程中能夠對於數學知識有感,且對於數學學習感覺到有趣,而研究中也的確顯示出這樣的結果,除此之外,Yang等人(2022)在覺動理論的理念與思考實驗下也提出任務設計的三個進程。然而較少文獻探討在這樣同時兼顧學生認知與情意正向發展的學習活動中,其學習的推動力為何,而在心理學領域針對認知與情意的交互作用進行探討的過程中早已融入了推進力的觀點,心理學以意動來稱呼這樣的推進力,也因此本研究著重於探討在數學奠基模組這樣同時兼顧學生認知與情意正向發展的數學學習活動中,學生的意動與認知、情意之間是如何進行交響協作,進而協助學生認知與情意的正向發展。
    在此研究方向上,研究者根據相關理論發展研究架構,包括引起意動的來源分類架構、意動與認知、情意間交響協作結果的架構,接著利用實徵研究法歸納交響協作的來源、型態及結果。意動的來源可以依據「引起意動的脈絡」與「學而不足的狀態」這兩個維度進行分類,「引起意動的脈絡」包含學生本身、任務以及社會互動三個面向;「學而不足的狀態」則包含偏認知方面的懸缺性、不確定性與不一致性以及偏情意方面的情意狀態與情意特質這幾個面向。當來源引起學生意動與認知、情意的交響協作之後,根據覺動理論,學生的學習是目標導向的,據此可以發現到當交響協作被引起之後,交響協作結果的部分則可以依據「目標」與「型態」這兩個維度進行分類,「目標」包含求理解的目標、求表現的目標以及社會性的目標;「型態」包含沒有認知、情緒或行為產生;純粹產生行為;透過表徵的操弄與形成產生行為;產生控制與評估產生行為或是產生新的意動來源;產生控制、評估與直接調整,調整後產生行為這五種。在此便可以呈現出本研究在探討意動與認知、情意之間的交響協作時,會以意動的來源、型態與結果作為對象進行探討,進而呈現出學生在這樣的環境下對數學學習感覺到有趣以及對於數學知識有感的原因及其機制。
    本研究的研究對象為六位國小四年級學生,在這六位學生中分別有高、中、低成就表現的學生各兩位。本研究採用質性研究法,希望能夠透過分析學生在進行數學奠基模組的學習過程,以了解學生意動與認知、情意之間的交響協作關係。本研究的資料是來自學生在進行長方形數與三角形密碼這兩個數學奠基模組的過程中所進行的課室錄音錄影,搭配學生的學習單、學生的筆記與紀錄、認知問卷、認識論下的情緒問卷與課後訪談,透過這些資料的搜集與互相校正,進一步呈現出學生在進行學習過程中意動與認知、情意之間的交響協作關係。
    研究結果的部分首先呈現出學生在數學奠基模組的學習歷程中,其意動與認知、情意間的交響協作共有四十種來源,接著指出學生在學習過程中意動與認知、情意間交響協作共有五種型態,這五種交響協作型態之間會有串連與並聯兩種互動模式。最後,對於型態間的互動進行歸因,進一步形成了學生在數學奠基模組學習過程中,意動與認知、情意間交響協作的機制。
    本研究在理論上的貢獻是透過連結本研究的實證研究結果與Yang等人針對數學奠基模組所提出的活動設計理論,進一步呈現出在學生進行學習的過程中,學生之所以會對於欲學習的數學知識有感是因為透過具體物的操作以及表徵間的轉譯,進而讓學生在學習過程中覺察不足,並且持續讓學生進行隱喻推理與體現思考,藉此協助學生連結源域與目標域,讓學生對於欲學習的數學知識有感;而學生之所以會對於數學學習感覺到有趣是因為學生在此過程中因成功所產生正向情緒的累積、滿足了學生好奇與想探索的態度或是因為學生贏得遊戲所經歷的正向情緒等,因此讓學生感覺到有趣。透過本研究的實證研究結果與Yang等人所提出的活動設計理論進行連結,進一步呈現出數學奠基模組學習環境下如何讓學生的認知與情意正向發展。

    Cognition and affect play important role during students’ mathematics learning. Both of them will interact with each other to influence students’ mathematical learning. Hence, both of them are expected to be positively developing. However, the international assessment, Trends in International Mathematics and Science Study, shows that there is a phenomenon, high achievement with low interest, needed to be addressed, and there is evidence which shows that the phenomena can really be addressed. In Taiwan, ShiDa institute of Mathematics Education launched “Just Do Math” program in order to address the problem, and mathematics grounding activities (MGAs) are the products under the program. Some researches show that MGAs can really lead students to make sense of mathematics knowledge and fully engage in learning mathematics. Yang et al. (2022) also proposed three key design processes of MGAs based on the thought experiments under the rationale of enactivism. However, very few articles investigate the driving force of the cognition-affect-positively-developing learning. In order to investigate the driving force, the researcher searches for the literature and finds that in psychology, conation is the term used to investigate the driving force of interaction between cognition and affect. Hence, the purpose of the study is to investigate the orchestration between conation, cognition and affect under the context of MGA.
    In order to investigate the orchestration, the researcher proposes the framework of the study based on the related theories. The research framework includes the classification framework for the resources triggering conation and the framework of the products of the orchestration. Then, the researcher carries out the empirical study to provide empirical evidence. Based on the theory and the empirical evidence, the resources of the orchestration can be classified based on two dimensions, the context triggering the conation and the state of the awareness of insufficiency. The context triggering the conation includes students’ own self, task and social interaction; the state of the awareness of insufficiency includes cognitive missing, cognitive uncertainty, cognitive difference, affective state and affective trait. When the resource triggers students’ orchestration, students’ learning happens. Under the rationale of enactivism, students’ learning is goal oriented. This shows that the results of the orchestration can be classified based on two dimensions, the setting goal and the type of the orchestration. The setting goal includes learning goal, performance goal and social goal; the type of the orchestration includes no any behavior, pure behavior only, the manipulation or formation of representations, control and self-evaluation without directly adaptation, and control and self-evaluation with directly adaptation. This shows that the study focuses on the resources, the types and the results of the orchestration during students’ learning under the context of MGA in order to investigate the reasons and the mechanism for students’ sense-making and fully engagement.
    The participants are six fourth-grade students, two high achievers; two medium achievers, and two low achievers. The data are the video and audio records of the MGA lesson; students’ worksheets and notes; cognitive questionnaires; epistemic emotional questionnaire, and post-lesson interview.
    The research results first show that there are forty resources of the orchestration, and then, based on the resources and the results of the orchestration, the research results show that there are five types of the orchestration and two interaction modes of the types. Based on the induction of the resources of the interaction between the five orchestration types, the study proposes the mechanism of the orchestration between conation, cognition and affect under the context of MGAs.
    Finally, the study combines the research results and the theory of designing MGAs proposed by Yang et al. (2022) to show that the reasons for students to make sense of the mathematics knowledge are that the manipulation of the manipulable object and the conversion between representations can lead students to aware the insufficiencies, and these insufficiencies will trigger students’ conation to lead students to cyclically doing metaphorical inference and embodied thinking in order to connect the source domain and target domain. The reasons for students to feel interesting during mathematics learning are the accumulation of the positive epistemic emotion, the satisfaction of the attitude of curiosity and inquiry or the positive emotion when students win the game, etc. Based on the aforementioned, students can positively develop their cognition and affect under the context of MGAs.

    致謝詞i 中文摘要iv 英文摘要vi 目次viii 表次xi 圖次xii 序章1 第壹章 緒論3 第一節 研究動機3 第二節 研究目的10 第三節 研究問題11 第四節 重要名詞解釋12 第貳章 文獻探討17 第一節 數學奠基模組的學習環境17 第二節 數學奠基模組學習環境中認知、情意與意動以及三者間交響協作的相關理論22 第參章 前導研究研究方法41 第一節 理論與研究架構41 一、理論架構42 二、研究架構46 第二節 研究方法與研究設計47 一、研究方法47 二、數學奠基模組50 三、研究倫理53 第三節 研究對象53 一、預處理與選擇方式54 二、預處理工具理論依據54 三、預處理工具55 四、研究對象背景55 第四節 資料搜集與分析55 一、資料搜集工具理論依據56 二、資料搜集工具61 三、質性資料分析方法62 四、質性資料分析架構理論依據63 五、分析架構67 六、案例分析示範例72 第五節 前導研究研究過程74 一、研究準備階段74 二、研究階段75 三、資料分析與研究結果撰寫階段77 四、前導研究研究流程77 第肆章 前導研究研究結果78 第一節 研究結果78 一、向量圖的系統78 二、意動與認知、情意間的交響協作80 第伍章 正式研究研究方法115 第一節 研究方法與研究設計115 一、研究方法115 二、數學奠基模組119 三、研究倫理122 第二節 研究對象122 一、研究對象選擇方式122 二、研究對象背景描述123 第三節 資料搜集與分析127 一、資料搜集工具理論依據127 二、資料搜集工具130 第四節 正式研究研究過程132 一、研究準備階段133 二、研究階段133 三、論文撰寫階段134 四、正式研究研究歷程135 第陸章 正式研究研究結果136 第一節 研究結果136 一、三角形密碼教學對於學生認知與情意正向發展的檢驗136 二、意動與認知、情意間的交響協作137 第柒章 結論與建議190 第一節 研究結果總整190 一、研究總結190 第二節 結論與討論198 第三節 研究貢獻與研究限制201 一、研究方面的貢獻201 二、教學實務面向的貢獻204 三、研究限制205 第四節 建議206 一、研究的建議206 二、教學實務面向的建議209 參考文獻211 一、中文部分211 二、英文部分211 附件一、實驗知情同意書223 附件二、長方形數概念問卷225 附件三、認識論下的情緒問卷228 附件四、修改過後長方形數奠基進教室問卷229 附件五、長方形數奠基模組課程與訪談進行時間規劃230 附件六、資料搜集流程以及長方形數數學奠基模組進行的內容與流程231 附件七、長方形數課程進行描述232 附件八、長方形數學生訪談紀錄241 附件九、長方形數原案分析與編碼254 附件十、長方形數後測結果313 附件十一、長方形數奠基進教室問卷結果319 附件十二、三角形密碼前測320 附件十三、三角形密碼後測323 附件十四、態度問卷前測326 附件十五、態度問卷後測328 附件十六、三角形密碼奠基模組情意問卷330 附件十七、三角形密碼奠基模組課程與訪談進行時間規劃331 附件十八、資料搜集流程以及三角形密碼數學奠基模組進行的內容與流程332 附件十九、三角形密碼課程進行描述333 附件二十、三角形密碼奠基模組學生訪談紀錄349 附件二十一、三角形密碼原案分析與編碼382 附件二十二、三角形密碼前、後測與延後測結果488 附件二十三、正式研究態度問卷前、後測結果500

    余漢儀(1998)。危險與秘密:硏究倫理。三民書局股份有限公司。https://books.google.com.tw/books?id=MgBSAAAACAAJ. https://doi.org/10.978.95714/28130
    吳宗儒、林福來、楊凱琳。(2024)。數學學習中認知與情緒的互動:以長方形數為例。載於楊凱琳與吳昭容(主編)。開發數學腦:情投意合的教與學(頁193-211)。元照出版社。https://doi.org/10.53106/9786263691490
    林福來、單維彰、李源順、鄭章華(2013)。十二年國民基本教育數學領域綱要內容之前導研究。國家教育研究院。https://doi.org/10.6476/JNE.201206.0001
    教育部(2003)。國民中小學九年一貫課程綱要。https://doi.org/10.6910/BER.200712_(53-4).0002
    教育部(2018)。十二年國民基本教育課程綱要--國民中小學暨普通型高級中等學校數學領域。https://www.k12ea.gov.tw/files/class_schema/課綱/12-數學/12-1/十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─數學領域.pdf. https://doi.org/10.6481/JTR.201804_11(1).04
    郭生玉(2010)。教育測驗與評量。臺北市:精華書局。https://doi.org/10.6587/JTHRE.202009_7(1).0002
    陳向明(2002)。社會科學質的硏究。五南圖書出版股份有限公司。https://books.google.com.tw/books?id=6Nl14QQbBJEC. https://doi.org/10.978.75097/92827
    楊凱琳(2017)。子計畫一:創新的課前奠基與課中建築活動模組之發展性研究(計畫編號:MOST 106-2511-S-003-003)。臺北市:國立臺灣師範大學數學系(所)。https://doi.org/10.6345/NTNU202202193
    謝志偉(2003)。自我調節學習理論之探究。 課程與教學,6(3), 147-168. https://doi.org/10.6384/CIQ.200307.0147
    蕭儒棠(2022)。TIMSS 2019評量架構(2)。 科學教育月刊,(450), 2-15. https://doi.org/10.6216/SEM.202208_(451).0001
    二、英文部分
    Abrahamson, D. (2021). Grasp actually: An evolutionist argument for enactivist mathematics education. Human Development, 65(2), 77-93. https://doi.org/10.1159/000515680
    Akpan, V. I., Igwe, U. A., Mpamah, I. B. I., & Okoro, C. O. (2020). Social constructivism: implications on teaching and learning. British Journal of Education, 8(8), 49-56. https://doi.org/10.12691/aees-9-7-9
    Atman, K. S. (1987). The role of conation (striving) in the distance education enterprise. American Journal of Distance Education, 1(1), 14-24. https://doi.org/10.1080/08923648709526568
    Barnes, A. (2019). Perseverance in mathematical reasoning: The role of children’s conative focus in the productive interplay between cognition and affect. Research in Mathematics Education, 21(3), 271-294. https://doi.org/10.1080/14794802.2019.1590229
    Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on psychological science, 1(1), 28-58. https://doi.org/10.1111/j.1745-6916.2006.00003.x
    Carruthers, P. (2017). Valence and Value. Philosophy and Phenomenological Research, 97(3), 658-680. https://doi.org/10.1111/phpr.12395
    Cheng, Y. (2000). Student teachers’ learning process of pedagogical concept: The case of generic example for learning mathematics concept. Unpublished doctoral dissertation). National Taiwan Normal University, Taiwan. https://doi.org/10.1215/9780822388579-005
    Chiu, M.-S., Lin, F.-L., Yang, K.-L., Hasumi, T., Wu, T.-J., & Lin, P.-S. (2022). The interplay of affect and cognition in the mathematics grounding activity: Forming an affective teaching model. Eurasia Journal of Mathematics, Science and Technology Education, 18(12), em2187. https://doi.org/10.29333/ejmste/12579
    Clarkson, P. C., FitzSimons, G. E., & Seah, W. T. (1999). Values relevant to mathematics? I’d like to see that! In D. Tynam, N. Scott, K. Stacey, G. Asp, J. Dowsey, H. Hollingsworth & B. McRae (Eds.), Mathematics: Across the ages. Melbourne: Mathematics Association of Victoria. https://doi.org/10.2307/2153223
    Corno, L. (1986). The metacognitive control components of self-regulated learning. Contemporary Educational Psychology, 11(4), 333-346. https://doi.org/10.1016/0361-476X(86)90029-9
    Council, N. R., & Committee, M. L. S. (2001). Adding it up: Helping children learn mathematics. National Academies Press. https://doi.org/10.17226/10434
    D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(2), 145-157. https://doi.org/10.1016/j.learninstruc.2011.10.001
    D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for learning. Learning and Instruction, 29, 153-170. https://doi.org/10.1016/j.learninstruc.2012.05.003
    DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational studies in Mathematics, 63(2), 131-147. https://doi.org/10.1007/s10649-006-9026-4
    Deci, E.L., & Ryan, R.M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press. https://doi.org/10.1007/978-1-4899-2271-7_2
    Di Martino, P., et al. (2016). Attitudes. In G. A. Goldin (Ed.), Attitudes, beliefs, motivation and identity in mathematics education. An overview of the field and future directions (pp. 2–5). Springer International. https://doi.org/10.1002/9781118821930.ch14
    Di Paolo, E., & Thompson, E. (2014). The enactive approach. In Shapiro, L. A., & Spaulding, S. (Eds.), The Routledge handbook of embodied cognition (pp. 86-96). Routledge. https://doi.org/10.4324/9781003322511-10
    Du, C., Qin, K., Wang, Y., & Xin, T. (2021). Mathematics interest, anxiety, self-efficacy and achievement: Examining reciprocal relations. Learning and Individual Differences, 91, 102060. https://doi.org/10.1016/j.lindif.2021.102060
    Duval, R. (2017). Understanding the mathematical way of thinking-The registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-9_2
    Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological review, 95(2), 256. https://doi.org/10.1037/0033-295X.95.2.256
    Ekman, P. (1999). Basic emotions. In Dalgleish, T., & Power, M. (Eds.), Handbook of cognition and emotion, (pp. 45-60). John Wiley & Sons. https://doi.org/10.1002/0470013494.ch3
    Ekman, P., & Friesen, W. V. (1978). Facial action coding system. In Ekman, P., Friesen, W. V., & Hager, J. (Eds.), Environmental Psychology & Nonverbal Behavior. https://doi.org/10.1007/BF01115465
    Elliott, E. S., & Dweck, C. S. (1988). Goals: An approach to motivation and achievement. Journal of personality and social psychology, 54(1), 5. https://doi.org/10.1037/0022-3514.54.1.5
    English, H. B., & English, A. C. (1958). A comprehensive dictionary of psychological and psychoanalytical terms: A guide to usage. https://doi.org/10.1525/aa.1959.61.3.02a00480
    Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. In P. Ernest (Ed.), Mathematics teaching: The state of the art (pp. 249–254). London: Falmer Press. https://doi.org/10.1080/0260747890150102
    Farrell, E. W. (1985). The role of motivational processes in transfer of learning. Harvard University. https://doi.org/10.2307/j.ctt1w6t9kh.21
    Frank, M. G., & Ekman, P. (1993). Not all smiles are created equal: The differences between enjoyment and nonenjoyment smiles. Humor, 6, 9–26. https://doi.org/10.1515/humr.1993.6.1.9
    Goldin, G. A. (2021). A Conative Perspective on Aha! Moments. In Czarnocha, B., & Baker, W. (Eds.), Creativity of an Aha! Moment and Mathematics Education (pp. 260-270). Brill. https://doi.org/10.1163/9789004446434_010
    Grootenboer, P., & Marshman, M. (2016). The affective domain, mathematics, and mathematics education. In Grootenboer, P., & Marshman, M. (Eds.), Mathematics, affect and learning: Middle school students’ beliefs and attitudes about mathematics education, (pp. 13-33). https://doi.org/10.1007/978-981-287-679-9_4
    Hameroff, S. (2021). ‘Orch OR’is the most complete, and most easily falsifiable theory of consciousness. Cognitive Neuroscience, 12(2), 74–76. https://doi.org/10.1080/17588928.2020.1839037.
    Hanin, V., Colognesi, S., & Van Nieuwenhoven, C. (2021). From perceived competence to emotion regulation: assessment of the effectiveness of an intervention among upper elementary students [Article]. European Journal of Psychology of Education, 36(2), 287-317. https://doi.org/10.1007/s10212-020-00481-6
    Hannula, M. S. (2001). The metalevel of cognition-emotion interaction. In O. B. M. Ahtee, E. Pehkonen, & V. Vatanen (Ed.), Research on Mathematics and Science Education: From Beliefs to Cognition, from Problem Solving to Understanding (pp. 55-65). University of Jyväskylä, Institute for educational research. https://doi.org/10.1016/0883-0355(89)90009-8
    Hannula, M. S. (2002). Attitude towards mathematics: Emotions, expectations and values. Educational studies in Mathematics, 49(1), 25-46. https://doi.org/10.1023/A:1016048823497
    Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In Pytlak , M. , Rowland , T. & Swoboda , E. (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education ,(pp. 34-60). University of Rzeszów. https://doi.org/10.1163/9789087903510_019
    Heckhausen, H., & Kuhl, J. (2021). From wishes to action: The dead ends and short cuts on the long way to action. In Frese, M., & Sabini, J. (Eds.), Goal directed behavior: The concept of action in psychology, (pp. 134-159). Routledge. https://doi.org/10.4324/9781003150749-12
    Heyd-Metzuyanim, E., Lutovac, S., & Kaasila, R. (2016). Identity. In G. A. Goldin (Ed.), Attitudes, beliefs, motivation and identity in mathematics education. An overview of the field and future directions, (pp. 14-17). Springer International. https://doi.org/10.1007/978-3-319-32811-9
    Hilgard, E. R. (1980). The trilogy of mind: Cognition, affection, and conation. Journal of the History of the Behavioral Sciences, 16(2), 107-117. https://doi.org/10.1002/1520-6696(198004)16:2<107::AID-JHBS2300160202>3.0.CO;2-Y
    Hooper, M., Mullis, I. V., Martin, M. O., & Fishbein, B. (2019). TIMSS 2019 context questionnaire framework. Timss, 59-78. https://doi.org/10.6216/SEM.202206_(449).0001
    Huitt, W. (1997). An overview of humanistic education. Educational Psychology Interactive. Valdosta, GA: Valdosta State University. Available online:[http://chiron. valdosta. edu/whuitt/col/affsys/humed. html]. https://doi.org/10.62915/2157-0396.1819
    Huitt, W., & Cain, C. (2018). Human agency and the conative domain. In W. Huitt (Ed.), Becoming a Brilliant Star: Twelve core ideas supporting holistic education (pp. 105-122). La Vergne, TN: IngramSpark. Retrieved from http://www.edpsycinteractive.org/papers/2018-06-huitt-cain-brilliant- star-agency.pdf. https://doi.org/ 10.1002/ase.1460
    Hussein, M. H., Ow, S. H., Elaish, M. M., & Jensen, E. O. (2021). Digital game-based learning in K-12 mathematics education: A systematic literature review. Education and Information Technologies, 1-33. https://doi.org/10.1007/s10639-021-10721-x
    Jackson, D. N., Ahmed, S. A., & Heapy, N. A. (1976). Is achievement a unitary construct? Journal of Research in personality, 10(1), 1-21. https://doi.org/10.1016/0092-6566(76)90079-9
    Jansen, M., Lüdtke, O., & Schroeders, U. (2016). Evidence for a positive relation between interest and achievement: Examining between-person and within-person variation in five domains. Contemporary Educational Psychology, 46, 116-127. https://doi.org/10.1016/j.cedpsych.2016.05.004
    Keller, J. M. (1979). Motivation and instructional design: A theoretical perspective. Journal of Instructional Development, 12(4), 26-34. https://doi.org/10.1007/BF02904345
    Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 1(3), 2-10. https://doi.org/10.1007/BF02905780
    Kolbe, K. (1990). The conative connection: Uncovering the link between who you are and how you perform. Addison-Wesley Longman. https://doi.org/10.2307/jj.18252561.5
    Kouba, V., & McDonald, J. (1987). Students' perceptions of mathematics as a domain. In J. C. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the eleventh international conference on the psychology of mathematics education (Vol. 1, pp. 106-112). Montreal, Canada. https://doi.org/10.2991/assehr.k.210508.075
    Lin. (2018, May, 07-11). Mathematics Education Reform in Taiwan: Mathematics Grounding Activity as a Driving Force The 8th ICMI-East Asia Regional Conferences on Mathematics Education, Taipei, Taiwan. https://doi.org/10.5951/MT.100.4.0298
    Lin. (2022, October 13). Awareness of Insufficiency: a driving force triggering the inter-evolution of affect and cognition in learning with MGAs Seminar by the Master's and Doctorate program in Mathematics Education of the Antonio Nariño University. https://doi.org/10.18282/l-e.v10i5.2713
    Lin, F.-L., Wang, T.-Y., & Chang, Y.-P. (2018). Effects of large-scale studies on mathematics education policy in Taiwan through the lens of societal and cultural characteristics. ZDM, 50(4), 587-600. https://doi.org/10.1007/s11858-018-0938-0
    Litt, A., Eliasmith, C., Kroon, F. W., Weinstein, S., & Thagard, P. (2006). Is the brain a quantum computer? Cognitive Science, 30(3), 593–603. https://doi.org/10.1207/s15516709cog0000_59
    Liu, Y., Fu, Q., & Fu, X. (2009). The interaction between cognition and emotion. Chinese Science Bulletin, 54(22), 4102-4116. https://doi.org/10.1007/s11434-009-0632-2
    Malmivuori, M. L. (2006). Affect and self-regulation. Educational studies in mathematics, 63, 149-164. https://doi.org/10.1007/s10649-006-9022-8
    Mason, J., & Johnston-Wilder, S. (2006). Designing and Using Mathematical Tasks. Tarquin. https://books.google.com.tw/books?id=yMXaAAAAMAAJ. https://doi.org/10.1080/10511970.2017.1396567
    Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational studies in Mathematics, 15, 277-289. https://doi.org/10.1007/BF00312078
    Maturana, H.R., & Varela, F.J. (1992). The tree of knowledge: The biological roots of human understanding(rev. edition). Boston: Shambhala. https://doi.org/10.29173/cmplct8773
    MacDougall, W. (1909). An Introduction to social Psychology. https://doi.org/10.1037/13634-001
    McGrew, K. S. (2022). The cognitive-affective-motivation model of learning (CAMML): Standing on the shoulders of giants. Canadian Journal of School Psychology, 37(1), 117-134. https://doi.org/10.1177/08295735211054270
    McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics. (pp. 575-596). Macmillan Publishing Co, Inc. https://doi.org/10.2307/749576
    Meredith, R. (2005). Knowledge and mind: A discussion paper on the nature of knowledge. Retrieved May, 12. https://doi.org/10.1093/mind/V.19.388
    Militello, L. G., Gentner, F. C., Swindler, S. D., & Beisner, G. I. (2006, May). Conation: Its historical roots and implications for future research. In W. Smari W. & McQuay W. (Eds.), International Symposium on Collaborative Technologies and Systems (CTS'06) (pp. 240-247). Las Vegas, NV, USA. https://doi.org/10.1109/CTS.2006.31
    Munzar, B., Muis, K. R., Denton, C. A., & Losenno, K. (2021). Elementary students’ cognitive and affective responses to impasses during mathematics problem solving. Journal of Educational Psychology, 113(1), 104. https://doi.org/10.1037/edu0000460
    Nu ́n ̃ez, R. (2000). Mathematical idea analysis: What embodied cognitive science can say about the human nature of mathematics. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (pp. 3–22). Japan: Hiroshima University. https://doi.org/10.51272/pmena.42.2020-12
    Op't Eynde, P., & De Corte, E. (2003). Students' Mathematics-Related Belief Systems: Design and Analysis of a Questionnaire. Paper Presented at the Annual Meeting of the American Educational Research Association, 1-14. https://doi.org/10.1016/j.ijer.2006.08.004
    Op't Eynde, P., De Corte, E., & Verschaffel, L. (2007). Students' emotions: A key component of self-regulated learning? In P. A. Schutz & R. Pekrun (Eds.), Emotion in education (pp. 185-204). Elsevier. https://doi.org/10.1016/B978-012372545-5/50012-5
    Op’t Eynde, P., De Corte, E., & Verschaffel, L. (2002). Framing students’ mathematics-related beliefs: A quest for conceptual clarity and a comprehensive categorization. In Leder, G. C., Pehkonen, E., & Törner, G. (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 13-37). Springer. https://doi.org/10.1007/0-306-47958-3_2
    Pang, J., & Seah, W. T. (2021). Excellent mathematical performance despite “negative” affect of students in Korea: The values perspective. ECNU Review of Education, 4(2), 285-306. https://doi.org/10.1177/2096531120930726
    Pekrun, R. (2000). A social-cognitive, control-value theory of achievement emotions. In J. Heckhausen (Ed.), Advances in psychology, 131. Motivational psychology of human development: Developing motivation and motivating development (pp. 143–163). New York: Elsevier Science. https://doi.org/10.1016/B978-012372545-5/50003-4
    Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational psychology review, 18, 315-341. https://doi.org/10.1007/s10648-006-9029-9
    Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36-48. https://doi.org/10.1016/j.cedpsych.2010.10.002
    Pekrun, R., & Stephens, E. J. (2012). Academic emotions. In Harris, K. R., Graham, S. E., Urdan, T. E., Graham, S. E., Royer, J. M., & Zeidner, M. E. (Eds.), APA educational psychology handbook, Vol 2: Individual differences and cultural and contextual factors. (pp. 3-31). American Psychological Association. https://doi.org/10.1037/13274-001
    Pekrun, R., Vogl, E., Muis, K. R., & Sinatra, G. M. (2017). Measuring emotions during epistemic activities: the Epistemically-Related Emotion Scales. Cognition and Emotion, 31(6), 1268-1276. https://doi.org/10.1080/02699931.2016.1204989
    Pessoa, L. (2008). On the relationship between cognition and emotion. Nat Rev Neurosci, 9, 148-158. https://doi.org/10.1038/nrn2317
    Piaget, J. (1985). The Equilibration of Cognitive Structures: The Central Problem of Intellectual Development. University of Chicago Press. https://books.google.com.tw/books?id=5zxmQgAACAAJ. https://doi.org/10.1086/443876
    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 451–502). Academic Press. https://doi.org/10.1016/B978-012109890-2/50043-3
    Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? Educational Studies in Mathematics, 26, 165–190. https://doi.org/10.1007/978-94-017-2057-1_3
    Rahimi, S., & khatooni, M. (2024). Saturation in qualitative research: An evolutionary concept analysis. International Journal of Nursing Studies Advances, 6, 100174. https://doi.org/https://doi.org/10.1016/j.ijnsa.2024.100174
    Roth, W.-M., & Walshaw, M. (2019). Affect and emotions in mathematics education: Toward a holistic psychology of mathematics education. Educational studies in Mathematics, 102(1), 111-125. https://doi.org/10.1007/s10649-019-09899-2
    Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational researcher, 38(5), 329-342. https://doi.org/10.3102/0013189X09338513
    Sander, E., & Heiß, A. (2014). Interactive computer-supported learning in mathematics: A comparison of three learning programs on trigonometry [Article]. Journal of Educational Computing Research, 50(1), 45-65. https://doi.org/10.2190/EC.50.1.c
    Sanmugam, M., Abdullah, Z., & Zaid, N. M. (2014). Gamification: Cognitive impact and creating a meaningful experience in learning. 2014 IEEE 6th Conference on Engineering Education (ICEED). https://doi.org/10.1109/ICEED.2014.7194700
    Scherer, K. R. (2005). What are emotions? And how can they be measured? Social science information, 44(4), 695-729. https://doi.org/10.1177/0539018405058216
    Schiefele, U. (2009). Situational and individual interest. In K. R. Wentzel, & A. Wigfield (Eds.), Handbook of motivation at school (pp. 197–222). New York: Routledge. https://doi.org/10.1016/S1041-6080(96)90030-8
    Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational studies in Mathematics, 105(3), 303-324. https://doi.org/10.1007/s10649-020-09973-0
    Seah, W. T. (2019). Values in mathematics education: Its conative nature, and how it can be developed. Research in Mathematical Education, 22(2), 99-121. https://doi.org/10.1007/978-0-387-09673-5_17
    Sengupta-Irving, T., & Agarwal, P. (2017). Conceptualizing perseverance in problem solving as collective enterprise. Mathematical thinking and learning, 19(2), 115-138. https://doi.org/10.1080/10986065.2017.1295417
    Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational studies in Mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715
    Sfard, A., & Kieran, C. (2001). Preparing teachers for handling students’ mathematical communication: Gathering knowledge and building tools. In Lin, F. L., & Cooney, T. J. (Eds.), Making sense of mathematics teacher education (pp. 185-205). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-010-0828-0_9
    Skulmowski, A., & Rey, G. D. (2018). Embodied learning: introducing a taxonomy based on bodily engagement and task integration. Cognitive research: principles and implications, 3(1), 1-10. https://doi.org/10.1186/s41235-018-0092-9
    Snow, R. E., & Jackson, D. N. (1992). Assessment of Conative Constructs for Educational Research and Evaluation: A Catalogue. Project 2.3: Enhancing the Utility of Performance Assessments: Domain Independent R&D. https://doi.org/10.2307/1176713
    Snow, R. E., & Jackson III, D. N. (1997). Individual Differences in Conation: Selected Constructs and Measures. In H. F. O'Neil (Jr.) & M. Drillings (Eds.), Motivation: Theory and research (pp. 71-99). Hillsdale, New Jersey: Lawrence Erlbaum. https://doi.org/10.1007/BF02904312
    Stacey, K., Burton, L., & Mason, J. (1982). Thinking mathematically. London: Addison-Wesley. https://doi.org/10.1017/S0025557200004782
    Stefanucci, J. K., & Storbeck, J. (2009). Don't look down: emotional arousal elevates height perception. Journal of Experimental Psychology: General, 138(1), 131-145. https://doi.org/10.1037/a0014797
    Stewart, D. (1854). The collected works of Dugald Stewart (Vol. 1). Constable. https://doi.org/10.1192/S2514990300001002
    Stuart, H. (1998). Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch OR ‘model of consciousness. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1743), 1869–1896. https://doi.org/10.1098/rsta.1998.0254
    Tembe, N., Igber Anyagh, P., & Ogbole Abakpa, B. (2020). Students mathematics interest as correlate of achievement in mathematics: Evidence from a sub-Saharan student sample. ScienceOpen Preprints. https://doi.org/10.22219/mej.v8i2.34218
    Thompson, E. (2007). Mind in Life: Biology, Phenomenology, and the Sciences of Mind. Cambridge, MA: Harvard University Press. https://doi.org/10.1007/s10743-009-9057-7
    Urdan, T. C., & Maehr, M. L. (1995). Beyond a two-goal theory of motivation and achievement: A case for social goals. Review of educational research, 65(3), 213-243. https://doi.org/10.2307/1170683
    Varela, F. J., Thompson, E., & Rosch, E. (1991). The Embodied Mind: Cognitive Science and Human Experience. Cambridge: MIT Press. https://doi.org/10.7551/mitpress/6730.001.0001
    Varela, F. J., Thompson, E., & Rosch, E. (2016). The embodied mind: Cognitive science and human experience. MIT press. https://doi.org/10.7551/mitpress/9780262529365.003.0002
    Verweij, M., Senior, T. J., Domínguez D, J. F., & Turner, R. (2015). Emotion, rationality, and decision-making: how to link affective and social neuroscience with social theory. Frontiers in neuroscience, 9, 332. https://doi.org/10.3389/fnins.2015.00332
    Vilhunen, E., Chiu, M., Salmela-Aro, K., Lavonen, J., & Juuti, K. (2022). Epistemic Emotions and Observations Are Intertwined in Scientific Sensemaking: A Study among Upper Secondary Physics Students. International Journal of Science and Mathematics Education, 1-22. https://doi.org/10.1007/s10763-022-10310-5
    Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305. https://doi.org/10.1080/0020739830140305
    Vygotsky, L. (1962). Thought and language. MIT Press. https://doi.org/10.1037/11193-000
    Wang, T.-Y., Lin, F.-L., & Yang, K.-L. (2021). Success factors for a national problem-driven program aimed at enhancing affective performance in mathematics learning. ZDM–Mathematics Education, 53, 1121-1136. https://doi.org/10.1007/s11858-021-01285-8
    Warren, H. C. (1906). The fundamental functions of consciousness. Psychological Bulletin, 3(7), 217. https://doi.org/10.1037/h0075353
    Yang, K.-L., Lin, F.-L., & Tso, T.-Y. (2022). An approach to enactivist perspective on learning: Mathematics-grounding activities. The Asia-Pacific Education Researcher, 31(6), 657-666. https://doi.org/10.1007/s40299-021-00616-3
    Yore, L. D., Pimm, D., & Tuan, H.-L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5, 559-589. https://doi.org/10.1007/s10763-007-9089-4
    Young-Loveridge, J., Taylor, M., Sharma, S., & Hawera, N. (2006). Students’ perspectives on the nature of mathematics. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces (Proceedings of the 29th annual conference of Mathematics Education Research Group of Australasia (Vol. 2, pp. 583–590). Canberra, Australia: MERGA. https://doi.org/10.1007/BF03217359
    Zembylas, M., & Schutz, P. A. (2016). Introduction to methodological advances in research on emotion in education. Springer International Publishing. https://doi.org/10.1007/978-3-319-29049-2_1
    Zhao, J., Hwang, G.-J., Chang, S.-C., Yang, Q.-f., & Nokkaew, A. (2021). Effects of gamified interactive e-books on students’ flipped learning performance, motivation, and meta-cognition tendency in a mathematics course. Educational Technology Research and Development, 69(6), 3255-3280. https://doi.org/10.1007/s11423-021-10053-0
    Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In Boekaerts, M., Zeidner, M., & Pintrich, P. R. (Eds.), Handbook of self-regulation (pp. 13-39). Academic press. https://doi.org/10.1002/9780470713303.ch2
    Zimmerman, B. J., & Pons, M. M. (1986). Development of a structured interview for assessing student use of self-regulated learning strategies. American educational research journal, 23(4), 614-628. https://doi.org/10.3102/00028312023004614

    下載圖示
    QR CODE