簡易檢索 / 詳目顯示

研究生: 劉桂安
Liu, Kuei-An
論文名稱: 探討高中數學教師的數學推理信念
指導教授: 楊凱琳
Yang, Kai-Lin
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 168
中文關鍵詞: 數學推理教師信念教師自我效能
論文種類: 學術論文
相關次數: 點閱:208下載:80
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的研究目的欲探討高中數學教師對於數學推理的信念,將從數學推理的本質、教師對於數學推理的教與學的信念、以及教師對於數學推理與數學推理教學之自我效能等三個面向切入,並加以分析其中關係。
    本研究採取現象圖析學,此研究法主張不同的個體對於類似的經驗都有不同的體會與理解,故本研究以立意取樣選取六位經驗豐富的高中數學教師為研究對象。再利用半結構式的訪談,蒐集六位教師在數學推理的本質、數學推理的教與學的信念、以及數學推理與數學推理教學之自我效能三個面向上的論述,並透過既有文獻對數學推理的分類加以分析歸納,亦使用紮根理論進行編碼分析。第一個面向,將數學推理的本質分成三個部份加以探討,分別是四種脈絡下的類別、四種方法與兩種目標,並探討其中之交互關係。第二個面向,將數學推理教與學的信念分成兩種向度,分別是「傳遞-接受」的教學與學習觀、以及「建構-發展」的教學與學習觀。第三個面向,將數學推理與數學推理教學之自我效能分成三個層次,分別是高自我效能、中自我效能和低自我效能。
    資料分析結果顯示,第一個面向,六位教師在不同脈絡下的類別、方法、與目標中,以教師對於概念性質定義或公式的理解上之信念有較大之差異,亦容易造成教師對於數學推理原本的認知有所衝突。第二個面向,六位教師在教學與學習的信念中,有三位教師偏向單一向度的信念,另外三位教師呈現兩種向度混合的信念,並呈現不同信念的教學模式與學習特點。第三個面向,六位教師數學推理及其教學的自我效能皆呈現兩種不同的依據。就各面向之間的交互關係,研究者依據分析結果合理猜測,教師對於數學推理本質的信念越廣,其教與學信念偏向混合觀;教師對於數學推理教與學的信念也與其數學推理與數學推理教學時的自我效能有關。但是,教師對於數學推理的本質與其進行數學推理與數學推理教學的自我效能間較無明顯的關係。

    摘要 i 目錄 ii 圖目錄 iii 表目錄 iv 第壹章 緒論 1 第一節 研究動機 1 第二節 研究目的與問題 3 第三節 名詞解釋 4 第貳章 文獻探討 5 第一節 數學推理 5 第二節 教師的數學教學信念及學習信念 18 第三節 教師自我效能 25 第參章 研究方法 28 第一節 研究設計 28 第二節 研究對象 29 第三節 研究工具 31 第四節 資料的蒐集與分析 35 第肆章 研究結果 85 第一節 數學推理的本質 85 第二節 數學推理的教學與學習信念 120 第三節 數學推理與數學推理的教學之自我效能 135 第四節 數學推理本質、教與學的信念和自我效能交互關係 144 第伍章 結論與建議 147 第一節 結論 147 第二節 建議 152 參考文獻 153 一、中文部份 153 二、英文部份 153 附錄 157 附錄一 訪談大綱 157 附錄二 訪談同意書 158 附錄三 課本介入之參考資料 159 附錄四 數學推理的本質之分析單位 166 附錄五 數學推理教學與學習信念之分析單位 167 附錄六 數學推理與數學推理教學的自我效能之分析單位 168

    一、中文部份
    唐書志、謝豐瑞(2012)。中學數學職前教師之信念。載於謝豐瑞(主編),臺灣數學師資培育跨國研究Taiwan TEDS-M 2008(pp. 221-252)。台北:國立臺灣師範大學數學系。
    教育部國民與學前教育署(2013)。修正普通高級中學課程綱要。台北市:教育部。
    徐宗國(譯)(1997)。質性研究概論(原作者:A. Strauss, J. Corbin)。臺北市:巨流。(原著出版年:1990)
    中華人民共和國教育部(2011)。義務教育數學課程標準(2011年版)。中華人民共和國北京:北京師範大學出版集團。
    蔡坤憲(譯)(2006)。怎樣解題(原作者:G. Polya)。臺北市:天下遠見。(原著出版年:1957)
    吳芝儀、李奉儒(譯)(2008)。質性研究與評鑑(原作者: M. Q. Patton)。嘉義市:濤石文化。(原作出版年:2002)

    二、英文部份
    Ayalon, M., & Even, R. (2008). Views of mathematics educators on the role of mathematics learning in the development of deductive reasoning. International Group for the Psychology of Mathematics Education, 113-120.
    Bandura, A. (1978). Self-efficacy: Toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
    Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
    Common Core State Standards Initiative (2010). Common Core State Standards for Mathematics. Common Core State Standards Initiative. Retrived from http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf.
    Department for Education (2013). National curriculum in England: Mathematics programmes of study. Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study.
    Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model. Journal of education for teaching, 15(1), 13-33.
    Ho, C. Y. (1994). Abduction? Deduction? Induction? Is there a logic of exploratory data analysis?. Presented at the Annual Meeting of American Educational Research Association, New Orleans, Louisiana.
    Kilpatrick, J., Swafford, J., & Findell, B. (2011). Adding It Up: Helping Children Learn Mathematics. Washington, D.C.
    Kuhs, T. M., & Ball, D. L. (1986). Approaches to teaching mathematics: Mapping the domains of knowledge, skills, and dispositions. East Lansing: Michigan State University, Center on Teacher Education.
    Lannin, J. K., Elliott, R., & Ellis, A. B. (2011). Developing essential understanding of mathematical reasoning for teaching mathematics in prekindergarten-grade 8. National Council of Teachers of Mathematics.
    Lew, H.-C. (2012). New challenge in the new 2011 revised curriculum of Korea: Mathematics attitude. Retrieved from http://apec-lessonstudy.kku.ac.th/Apec%20Khon%20Kaen2012/documents/Hee-chan%20Lew.pdf.
    Lithner, J. (2000). Mathematical reasoning in school tasks. Educational studies in mathematics, 41(2), 165-190.
    Lithner, J. (2006). A framework for analysing qualities of mathematical reasoning: Version 3. Department of Mathematics and Mathemical Statistics, Umeå universitet.
    Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255-276.
    Lin, F. L., & Yang, K. L. (2002). Defining a rectangle under a social and practical setting by two seventh graders. Zentralblatt für Didaktik der Mathematik, 34(1), 17-28.
    Marton, F. (1981). Phenomenography—describing conceptions of the world around us. Instructional science, 10(2), 177-200.
    Martin, W. G.,Carter, J., Forster, S., Howe, R., Kader, G., Kepner, H., Reed Quander, J., & Valdez, P. (2009). Focus in high school mathematics: Reasoning and sense making. Reston, VA: National Council of Teachers of Mathematics.
    Niiniluoto, I. (1999). Defending abduction. Philosophy of Science, S436-S451.
    Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. 3rd Mediterranean conference on mathematical education,115-124.
    Peirce, C. S. (1878a). How to make our ideas clear. Popular science monthly, 12, 286-302.
    Peirce, C. S. (1878b). Deduction, induction, and hypothesis. Popular science monthly, 13, 470-482.
    Philippou, G., & Christou, C. (2002). A study of the mathematics teaching efficacy beliefs of primary teachers. Beliefs: A Hidden Variable in Mathematics Education?, 211-231. Springer Netherlands.
    Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching practice. Journal for research in mathematics education, 550-576.
    Russell, S. J. (1999). Mathematical reasoning in the elementary grades. Developing mathematical reasoning in grades K-12, 61, 1.
    Singapore Ministry of Education (2013). Primary mathematics teaching and learning syllabus. Ministry of Education, Singapore. Retrieved from http://www.moe.gov.sg/education/syllabuses/sciences/files/maths-primary-2013.pdf.
    Takahashi, A., Watanabe, T., Yoshida, M. (2008). English translation og the Japanese mathematics curricula in the course of study. Retrieved from http://www.globaledresources.com/products/assets/Teaching%20Guide%20Lower%20Secondary%20E.pdf.
    Thompson, A.G. (1992). Teacher's Beliefs and Conceptions: A Synthesis of Research. In Grouws, D.A. (Ed.), Handbook of Research on Mathematics Teaching and Learning, 127-146. New York: Macmillan.
    Xenofontos, C., & Andrews, P. (2014). Defining mathematical problems and problem solving: prospective primary teachers’ beliefs in Cyprus and England. Mathematics Education Research Journal, 26(2), 279-299.
    Yackel, E., & Hanna, G. (2003). Reasoning and proof. A research companion to principles and standards for school mathematics, 227-236.

    下載圖示
    QR CODE