簡易檢索 / 詳目顯示

研究生: 李肇龍
Chao Lung Lee
論文名稱: 雷射退火系統及深層能階暫態能譜(DLTS)系統架設
The Setup of Laser Annealing System and Deep Level Transient Spectroscopy(DLTS)
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 雷射退火系統架設
英文關鍵詞: laser annealing, DLTS
論文種類: 學術論文
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是結合兩種,分別是Nd:Yag雷射退火和DLTS((Deep-Level Transient Spectroscopy)的系統架構。
    Nd:Yag雷射可用於多方面,本論文是先討論雷射系統架構的方式,結合許多機台將其連結成系統後,之後在探討調整不同的雷射能量,所造成的退火效果,由於雷射能量高,發射速度快,再利用移動平台可以精準的控制想要退火的區域,有別於其他退火方式的不同,傳統退火需要整體上的退火,例如爐管,無法控制想要退火的區域,因此如何將雷射退火系統架構起來,是本論文的重點之一。
    除此之外,本論文另外一個重點是利用DLTS的技術,可以應用於半導體的技術檢測,利用電子對電壓的反應來判斷元件是否優劣。本論文就以需要的量測需求,針對儀器的極限和能力將其可以運作成量測的系統,同樣也是將許多機台組合成一系統,使其發揮機台本身的價值,也是本論文的重點之一。
    之後未來的目標,是希望可以將這兩種系統,能夠結合在一起,利用雷射系統來退火針對薄膜電晶體(TFT),或是使用雷射結晶,之後連結DLTS的量測方式,用來檢視薄膜電晶體的內部缺陷,對於元件內的可以分析以及討論。

    This paper is a combination of two kinds system, Nd: Yag laser annealing and DLTS ((Deep-Level Transient Spectroscopy) system.
    Nd: Yag laser can be used in many ways, this paper is discuss the way the laser system architecture, combined with a lot of machines to link into the system.Adjustment with different laser energy,we can know about annealing effect.Due high laser energy , emission speed fast, and then use the move stage can precisely control the annealing regions.Unlike other annealing different ways, the traditional annealing is annealing on the whole region, such as the furnace tube, we can not control the area or region which we want to annealing, the laser annealing system is the focus of this paper.
    In addition, another focus of this paper is the use of DLTS technique can be applied to the detection of semiconductor technology, the use of the electronic response of the voltage component to determine whether good or bad. The research is based on the measurement is also to be combined into other machine system for instrument limits.How to combined the machine is also the focus of this paper one.
    After future goal is to be able to these two systems can be combined using laser annealing system for thin film transistor (TFT),or use the laser crystallization.In addition to link DLTS measurements way,discuss the TFT internal defects , we can know the TFT can be analyzed and discussed.

    圖目錄 ……………………………………………………………… I 表目錄 ………………………………………………………………V 中文摘要 ……………………………………………………………VI 英文摘要 ……………………………………………………………VII 致謝 ………………………………………………………………VIII 目錄 …………………………………………………………………IX 第一章、緒論 1.1 Nd:YAG雷射 …………………………………………………… 1 1.2 DLTS …………………………………………………………… 2 第二章、脈衝雷射退火系統 2.1 雷射原理簡述以及應用 ………………………………………… 3 2.1.1光子晶體 ……………………………………………………6 2.1.2倍頻器 ………………………………………………………8 2.2 雷射文獻回顧 …………………………………………………10 2.2.1固相結晶法(SPC) ……………………………………………10 2.2.2準分子雷射退火技術(ELA) ………………………………12 2.3雷射系統架構………………………………………………………16 2.3.1移動平台……………………………………………………20 2.3.2雷射控制程式………………………………………………21 2.3.3調整光路……………………………………………………22 2.3.4雷射透鏡選擇………………………………………………24 2.4樣品製備……………………………………………………………25 2.5雷射退火操作………………………………………………………27 2.5.1注意事項……………………………………………………27 2.5.2實驗內容……………………………………………………27 2.5.3結果與討論…………………………………………………30 2.5.4雷射熱模擬…………………………………………………33 2.6總結…………………………………………………………………35 第三章 、DLTS系統架設 3.1 DLTS原理 ……………………………………………………… 36 3.1.1 Schockey-Read-Hall(SRH)model……………………………36 3.1.2 電容暫態響應………………………………………………38 3.1.3 DLTS量測信號處理與速率窗(rate windows)之關係………39 3.2實驗系統架構 ……………………………………………………41 3.2.1 DLTS系統架設圖……………………………………………41 3.2.2 程式設計流程(指令模式)…………………………………43 3.2.3 程式設計流程(使用者模式)………………………………46 3.3 實驗方法及步驟…………………………………………………52 3.4 結果與討論………………………………………………………53 3.4.1 Ni/PZT/Si……………………………………………………53 3.4.2 Tin/HfO2/Si…………………………………………………58 3.4.3 CIGS…………………………………………………………61 3.5總結…………………………………………………………………64 第四章 結論與未來工作 4.1 結論 ……………………………………………………………65 4.2未來工作 …………………………………………………………66 4.2.1 脈衝雷射退火………………………………………………66 4.2.2 DLTS…………………………………………………………66 參考文獻 ……………………………………………………………67

    [1] 劉國基 張百齊,“Nd-YAG 雷射的加工應用” ,遠東學報第十九期 中華民國九十年九月出版.
    [2] K. Ishida, H. Okabayashi, and M. Yoshida, “Lattice defects in As implanted and cw Nd:YAG laser annealed silicon,” Applied Physics Letters, vol. 37, pp. 175, 1980.
    [3] O. Homburg, D. Hauschild, F. Kubacki, and V. Lissotschenko, “Efficient beam shaping for high-power laser applications,” Proc. SPIE 6216, Laser Source and System Technology for Defense and Security II, 621608 , May 12 2006.
    [4] Y. Tsunoda, “Q-Switched Nd:YAG Laser Annealing of an As Implanted Si Layer, and Its Application to a Buried Collector,” Japanese Journal of Applied Physics, Vol. 21, Issue 2, pp. L106-L108 , 1982.
    [5] Y. Wenchang, C. Hsinchi, H. Hsiangen, H. Chihping, and J. Jengywan, “Superlateral growth of a-Ge film by excimer laser annealing,” Applied Physics Letters, vol. 93, 094103, 2008.
    [6] S. Earles, M. Law, R. Brindos, K. Jones, S. Talwar, and S. Corcoran, “Nonmelt laser annealing of 5-KeV and 1-KeV Boron-implanted silicon,” IEEE Transactions on Electron Device, Vol. 49, NO. 7, July 2002.
    [7] M. Elliq, E. Fogarassy, J. P. Stoquert, C. Fuchs, S. de Unamuno, B. Prevot, and H. Pattyn, “Pulsed excimer and Nd:YAG laser crystallization of a-Si:H: The specific role of hydrogen,” Applied Surface Science, Vol. 46, pp. 378-382, 1990.
    [8] F. Mangano, L. Caristia, N. Costa, M. Camalleri, S. Ravesi, S. Scalese, S. Bagiante, and V. Privitera, “Laser annealing of a-Si for realization of polycrystalline Si film on plastic substrate,” in 15th IEEE International Conference on Advanced Thermal Processing of Semiconductors - RTP2007.
    [9] A. Hara, M. Takei, F. Takeuchi, K. Suga, K. Yoshino, M. Chida, T. Kakehi, Y. Ebiko, Y. Sano, and N. Sasaki, “High performance low temperature polycrystalline silicon thin film transistors on non-alkaline glass produced using diode pumped solid state continuous wave laser lateral crystallization,” Japanese Journal of Applied Physics, Vol. 43, No. 4A, pp. 1269–1276, 2004.
    [10] A. Hara, M. Takei, K. Yoshino, F. Takeuchi, and N. Sasaki, “Self-aligned metal double-gate low-temperature polycrystalline silicon thin-film transistors on non-alkali glass substrate using diode-pumped solid-state continuous wave laser lateral crystallization,” Japanese Journal of Applied Physics, Vol. 43, No. 6B, pp. L790–L793, 2004.
    [11] Z. Shouhuan, L. K. K. , and C. Y. C. , “Monolithic self-Q-switched Cr,Nd:YAG laser,” OPTICS LETTERS, Vol. 18, No. 7, April 1 1993.
    [12] A. T. Voutsas, and M. K. Hatalis, “Deposition and crystallization of a-Si low-pressure Chemical-Vapor-deposited films obtained by low-temperature pyrolysis of disilane,” J. Electrochem. Soc., Vol. 140, pp. 871-877, 1993.
    [13] A. T. Voutsas, and M.K. Hatalis, “Structural characteristics of As-deposited and crystallized mixed-phase silicon films,” J. Electron. Mat., Vol. 23, pp. 319-330, 1994.
    [14] K. Kagawa, Y. Niwatsukino, A. Matsuno, and K. Shibahara, ‘‘Influencc of pulse duration on KrF excimer laser annealing process for ultra shallow junction formation,’’ Japan Society of Applied Physics, 2002.
    [15] ‘‘Measuring Laser Power and Energy Output,’’ Coherent.
    [16] http://www.thorlabs.hk/thorproduct.cfm?partnumber=NB1-J07.
    [17] R. Voelkel, and K. J. Weible, ‘‘Laser beam homogenizing limitations and constraints,’’ SPIE Europe Optical System Design, Sep.12 2008.
    [18] ‘‘MICROLENS ARRAYS – CATALOG 2013,’’ SUSS MicroOptics.
    [19] G. Raciukaitis, Evaldas Stankevicius, P. Gecys, M. Gedvilas, C. Bischoff, E. Jager, U. Umhofer, and F. Volklein, ‘‘Laser processing by using diffractive optical laser beam shaping technique,’’ Journal of Laser Micro/Nanoengineering, Vol. 6, No. 1, 2011.
    [20] S. Earles, M. E. Law, K. S. Jones, J. Frazer, S. Talwar, D. Downey, and E. Arevalo, ‘‘Formation of ultrashallow junctions in 500ev Boron implanted silicon using nonmelt lsaer annealing,’’ 12th IEEE Intern ational Conference on Advanced Thennal Processing of Semiconductors- RTP2004.
    [21] R. Murto, K. Jones, M. Rendon, and S. Talwar, ‘‘Activation and deactivation studies of laser thermal annealed Boron, Arsenic, Phosphorus, and Antimony ultra-shallow abrupt junctions,’’ IEEE Ion Implantation Technology, pp. 155-158, 2000.
    [22] ‘‘Simulation of Laser Annealing,’’ Synopsys. Inc. , 2007.
    [23] Y. Farazila, Y. Miyashita, W. Hua, Y. Mutoh, and Y. Otsuka, ‘‘YAG laser spot welding of PET and metallic materials,’’ Journal of Laser Micro/Nanoengineering , Vol. 6, No. 1, 2011.
    [24] D. Kot, T. Mchedlidze, G. Kissinger, and W. von Ammon, ‘‘Characterization of deep levels introduced by RTA and by subsequent anneals in n-type Silicon,’’ ECS Journal of Solid State Science and Technology, 2 (1), pp. 9-12, 2013.
    [25] D. V. Lang, ‘‘Deep level transient spectroscopy: A new method to characterize traps in semiconductors,’’ Journal of Applied Physics, Vol. 45, No.7, July 1974.
    [26] P. F. Baude, C. Ye, and D. L. Polla, ‘‘Deep level transient spectroscopy characterization of ferroelectric Pb(Zr,Ti)03 thin films,’’ Appl. Phys. Lett., Vol. 64, No. 20, 16 May 1994.
    [27] P. Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N. Sawaki, ‘‘Deep levels in the upper band-gap region of lightly Mg-doped GaN,’’ Appl. Phys. Lett., Vol. 68, No. 10, 4 March 1996.
    [28] M. A. Exarchos, G. J. Papaioannou, D. N. Kouvatsos, and A. T. Voutsas, ‘‘Investigation of drain current transient behavior in SLS TFTs with the DLTS technique,’’ Journal of Physics: Conference Series, Vol. 10, Issue 1, pp. 23-26, 2005.
    [29] Lu Q. R. , Huang B. , Wei Y. B. , Gao D. M. , ‘‘Simulation of deep level center based on deep-level transient spectroscopy,’’ Journal of Computer Applications, Vol. 31, Suppl. 1, June 2011.

    無法下載圖示 本全文未授權公開
    QR CODE