研究生: |
蔡孝杰 Tsai, Hsiao-Chieh |
---|---|
論文名稱: |
透過將螢光信號標記嫁接於人類胰島類澱粉多肽用以偵測其寡聚體形成 Grafting a fluorescent signal tag on islet amyloid polypeptide for the detection of oligomer formation |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
口試委員: |
李以仁
Lee, I-Ren 劉維民 Liu, Wei-Min 杜玲嫻 Tu, Ling-Hsien |
口試日期: | 2023/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 胰島類澱粉蛋白 、寡聚體 、螢光分子 、聚集誘導放光 |
英文關鍵詞: | Islet amyloid polypeptide, Oligomers, Fluorescent molecules, Aggregation-induced emission |
研究方法: | 實驗設計法 、 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202300812 |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰島類澱粉蛋白(Islet amyloid polypeptide, IAPP)是一種與胰島素共同由胰島β細胞分泌出來的多肽激素。IAPP在正常生理情況下是可溶且無結構的。然而,在某些狀態下它們往往會聚集成可溶性寡聚體,進而形成不可溶的類澱粉蛋白纖維。寡聚體具細胞毒性,多項研究指出它們會使β細胞功能失調和β細胞數量下降。因此,在IAPP纖維化的過程中,能夠即時監測寡聚體的出現顯然是一件重要的事。首先,此論文的第一部分,我們嘗試在IAPP不同位點上嫁接了對環境敏感型的螢光分子7-氮雜色胺酸(代號Wx),此螢光分子於疏水性環境中具強放光的特性,藉此,我們用以觀察IAPP聚集過程中螢光的變化來推論是否有寡聚體的產生,雖然結果不如預期,不過我們得知將Wx嫁接於胜肽最N端時,對於IAPP整體的聚集行為影響最小。因此,我們第二個部分實驗則同樣在IAPP最N端嫁接了具有聚集誘導放光特性的四苯乙烯(Tetraphenylethylene, TPE),當IAPP混以少量TPE標記的IAPP時,我們成功在IAPP聚集成核期就觀察到TPE螢光的上升,即時監測到IAPP寡聚體的形成。
Islet amyloid polypeptide (IAPP) is a 37- residue peptide hormone that is co-secreted with insulin by pancreatic β-cells. IAPP monomers are mostly unstructured and physiologically soluble. However, they tend to aggregate into soluble oligomers, which in turn form insoluble amyloid fibrils. Studies have noted that the main cytotoxic role in the pathogenesis of type 2 diabetes is associated with the early formation of small oligomers, which could lead to β-cell dysfunction and death. Therefore, it is important to monitor the formation of oligomers during the fibrillation process of IAPP. First, an environment-sensitive fluorescent molecule 7-Azatryptophan (7-AzaTrp, noted as Wx) was utilized and grafted onto the IAPP. The fluorescence changes and aggregation properties of tagged IAPP were discussed. Although it is not able to obtain information on oligomer formation, it is known that the grafting of Wx to the most N-terminus of the peptide has the least effect on the overall aggregation process of IAPP. Next, the aggregation-induced emission molecule tetraphenylethene (TPE) was grafted also on the N-terminal of IAPP. The effect of TPE molecule on IAPP aggregation was examined and their emission which accompanies peptide aggregation was also monitored to probe the formation of IAPP oligomers.
1. Soto, C.; Pritzkow, S., Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 2018, 21 (10), 1332-1340.
2. Herczenik, E.; Gebbink, M. F. B. G., Molecular and cellular aspects of protein misfolding and disease. The FASEB Journal 2008, 22 (7), 2115-2133.
3. Buxbaum, J. N.; Dispenzieri, A.; Eisenberg, D. S.; Fändrich, M.; Merlini, G.; Saraiva, M. J. M.; Sekijima, Y.; Westermark, P., Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2022, 29 (4), 213-219.
4. Rambaran, R. N.; Serpell, L. C., Amyloid fibrils: abnormal protein assembly. Prion 2008, 2 (3), 112-7.
5. Baker, K. R.; Rice, L., The amyloidoses: clinical features, diagnosis and treatment. Methodist Debakey Cardiovasc J 2012, 8 (3), 3-7.
6. Roan, N. R.; Münch, J.; Arhel, N.; Mothes, W.; Neidleman, J.; Kobayashi, A.; Smith-McCune, K.; Kirchhoff, F.; Greene, W. C., The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol 2009, 83 (1), 73-80.
7. Hasib Sidiqi, M.; Gertz, M. A., Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2021. Blood Cancer Journal 2021, 11 (5), 90.
8. Sagar, A. V.; Divya, C.; Prathyusha, A.; Haritha, P., A detailed approach on multiple myeloma and its treatment. International Journal of Basic & Clinical Pharmacology 2017, 2 (6), 671-676.
9. Sack, G. H., Serum amyloid A – a review. Molecular Medicine 2018, 24 (1), 46.
10. Drüeke, T. B., Beta2-microglobulin and amyloidosis. Nephrol Dial Transplant 2000, 15 Suppl 1, 17-24.
11. Floege, J.; Ketteler, M., β2-Microglobulin–derived amyloidosis: An update. Kidney International 2001, 59, S164-S171.
12. Wang, W. Y.; Tan, M. S.; Yu, J. T.; Tan, L., Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med 2015, 3 (10), 136.
13. Bloom, G. S., Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014, 71 (4), 505-8.
14. Murphy, M. P.; LeVine, H., 3rd, Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 2010, 19 (1), 311-23.
15. Stefanis, L., α-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med 2012, 2 (2), a009399.
16. Mukherjee, A.; Morales-Scheihing, D.; Salvadores, N.; Moreno-Gonzalez, I.; Gonzalez, C.; Taylor-Presse, K.; Mendez, N.; Shahnawaz, M.; Gaber, A. O.; Sabek, O. M.; Fraga, D. W.; Soto, C., Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. J Exp Med 2017, 214 (9), 2591-2610.
17. Engel, M. F.; Khemtémourian, L.; Kleijer, C. C.; Meeldijk, H. J.; Jacobs, J.; Verkleij, A. J.; de Kruijff, B.; Killian, J. A.; Höppener, J. W., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci U S A 2008, 105 (16), 6033-8.
18. Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L.-H.; Wang, H.; Wong, A. G.; Zhang, X.; Abedini, A.; Schmidt, A. M.; Raleigh, D. P., Islet amyloid polypeptide: structure, function, and pathophysiology. Journal of Diabetes Research 2016, 2016, 2798269.
19. Giannetta, E.; Guarnotta, V.; Altieri, B.; Sciammarella, C.; Guadagno, E.; Malandrino, P.; Puliani, G.; Feola, T.; Isidori, A. M.; Colao, A. A. L.; Faggiano, A., ENDOCRINE TUMOURS: Calcitonin in thyroid and extra-thyroid neuroendocrine neoplasms: the two-faced Janus. European Journal of Endocrinology 2020, 183 (6), R197-R215.
20. Blank, M.; Campbell, M.; Clarke, J. O.; Comenzo, R.; Dember, L. M.; Dispenzieri, A.; Dorbala, S.; Dunnmon, P.; Faller, D. V.; Falk, R. H.; Gormley, N.; Hsu, K.; Karp, C. D.; Landau, H.; Lee, J. L.; Lousada, I.; Mauermann, M. L.; Maurer, M.; Sanchorawala, V.; Signorovitch, J.; Smith, K.; Wechalekar, A. D.; Weiss, B. M.; White, M. K.; Lousada, I.; The Inaugural Amyloidosis Forum, P., The Amyloidosis Forum: a public private partnership to advance drug development in AL amyloidosis. Orphanet Journal of Rare Diseases 2020, 15 (1), 268.
21. Theodorakakou, F.; Fotiou, D.; Dimopoulos, M. A.; Kastritis, E., Future developments in the treatment of AL amyloidosis. Hemato 2022, 3 (1), 131-152.
22. Engel, M. F. M.; Khemtémourian, L.; Kleijer, C. C.; Meeldijk, H. J. D.; Jacobs, J.; Verkleij, A. J.; de Kruijff, B.; Killian, J. A.; Höppener, J. W. M., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proceedings of the National Academy of Sciences 2008, 105 (16), 6033-6038.
23. Newberry, R. W.; Raines, R. T., Secondary forces in protein folding. ACS Chem Biol 2019, 14 (8), 1677-1686.
24. Englander, S. W.; Mayne, L., The nature of protein folding pathways. Proceedings of the National Academy of Sciences 2014, 111 (45), 15873-15880.
25. Tang, J., MutationMiner: integration of text mining and database management to support protein mutation analysis. 2023.
26. YADA, R. Y.; JACKMAN, R. L.; NAKAI, S., Secondary structure prediction and determination of proteins — a review. International Journal of Peptide and Protein Research 1988, 31 (1), 98-108.
27. Yu, X.; Wang, C.; Li, Y., Classification of protein quaternary structure by functional domain composition. BMC Bioinformatics 2006, 7, 187.
28. Kim, D. N.; Jacobs, T. M.; Kuhlman, B., Boosting protein stability with the computational design of β-sheet surfaces. Protein Sci 2016, 25 (3), 702-10.
29. Makin, O. S.; Serpell, L. C., Structures for amyloid fibrils. The FEBS Journal 2005, 272 (23), 5950-5961.
30. Xi, W.-H.; Wei, G.-H., Amyloid-β peptide aggregation and the influence of carbon nanoparticles*. Chinese Physics B 2016, 25 (1), 018704.
31. Röder, C.; Kupreichyk, T.; Gremer, L.; Schäfer, L. U.; Pothula, K. R.; Ravelli, R. B. G.; Willbold, D.; Hoyer, W.; Schröder, G. F., Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils. Nature Structural & Molecular Biology 2020, 27 (7), 660-667.
32. Adamcik, J.; Mezzenga, R., Study of amyloid fibrils via atomic force microscopy. Current Opinion in Colloid & Interface Science 2012, 17 (6), 369-376.
33. Tycko, R., Characterization of amyloid structures at the molecular level by solid state nuclear magnetic resonance spectroscopy. Methods Enzymol 2006, 413, 103-22.
34. Zandomeneghi, G.; Krebs, M. R.; McCammon, M. G.; Fändrich, M., FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci 2004, 13 (12), 3314-21.
35. Sasahara, K.; Goto, Y., Application and use of differential scanning calorimetry in studies of thermal fluctuation associated with amyloid fibril formation. Biophys Rev 2013, 5 (3), 259-269.
36. Measey, T. J.; Schweitzer-Stenner, R., Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Journal of the American Chemical Society 2011, 133 (4), 1066-1076.
37. Groenning, M., Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol 2010, 3 (1), 1-18.
38. Iannuzzi, C.; Maritato, R.; Irace, G.; Sirangelo, I., Misfolding and amyloid aggregation of apomyoglobin. International journal of molecular sciences 2013, 14, 14287-300.
39. Renkema, J. M.; Gruppen, H.; van Vliet, T., Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. J Agric Food Chem 2002, 50 (21), 6064-71.
40. Zheng, Y.; Ley, S. H.; Hu, F. B., Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology 2018, 14 (2), 88-98.
41. Einarson, T. R.; Acs, A.; Ludwig, C.; Panton, U. H., Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol 2018, 17 (1), 83.
42. Opie, E. L., The relation oe diabetes mellitus to lesions of the pancreas. hyaline degeneration of the islands oe langerhans. J Exp Med 1901, 5 (5), 527-40.
43. Cao, P.; Abedini, A.; Raleigh, D. P., Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. Current Opinion in Structural Biology 2013, 23 (1), 82-89.
44. Westermark, P.; Engström, U.; Westermark, G. T.; Johnson, K. H.; Permerth, J.; Betsholtz, C., Islet amyloid polypeptide (IAPP) and pro-IAPP immunoreactivity in human islets of Langerhans. Diabetes Res Clin Pract 1989, 7 (3), 219-26.
45. Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L. H.; Wang, H.; Wong, A. G.; Zhang, X.; Abedini, A.; Schmidt, A. M.; Raleigh, D. P., Islet amyloid polypeptide: structure, function, and pathophysiology. J Diabetes Res 2016, 2016, 2798269.
46. Khemtémourian, L.; Killian, J. A.; Höppener, J. W.; Engel, M. F., Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp Diabetes Res 2008, 2008, 421287.
47. Leung, C. W. T.; Guo, F.; Hong, Y.; Zhao, E.; Kwok, R. T. K.; Leung, N. L. C.; Chen, S.; Vaikath, N. N.; El-Agnaf, O. M.; Tang, Y.; Gai, W.-P.; Tang, B. Z., Detection of oligomers and fibrils of α-synuclein by AIEgen with strong fluorescence. Chemical Communications 2015, 51 (10), 1866-1869.
48. Quittot, N.; Sebastiao, M.; Al-Halifa, S.; Bourgault, S., Kinetic and conformational insights into islet amyloid polypeptide self-assembly using a biarsenical fluorogenic probe. Bioconjugate Chemistry 2018, 29 (2), 517-527.
49. Teoh, C. L.; Su, D.; Sahu, S.; Yun, S.-W.; Drummond, E.; Prelli, F.; Lim, S.; Cho, S.; Ham, S.; Wisniewski, T.; Chang, Y.-T., Chemical fluorescent rrobe for detection of Aβ oligomers. Journal of the American Chemical Society 2015, 137 (42), 13503-13509.
50. Klymchenko, A. S., Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Accounts of Chemical Research 2017, 50 (2), 366-375.
51. Yan, C.; Dai, J.; Yao, Y.; Fu, W.; Tian, H.; Zhu, W.-H.; Guo, Z., Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice. Nature Protocols 2023, 18 (4), 1316-1336.
52. Crespo-Otero, R.; Kungwan, N.; Barbatti, M., Stepwise double excited-state proton transfer is not possible in 7-azaindole dimer. Chemical Science 2015, 6 (10), 5762-5767.
53. Takeuchi, S.; Tahara, T., The answer to concerted versus step-wise controversy for the double proton transfer mechanism of 7-azaindole dimer in solution. Proceedings of the National Academy of Sciences 2007, 104 (13), 5285-5290.
54. Takeuchi, S.; Tahara, T., Excitation-wavelength dependence of the femtosecond fluorescence dynamics of 7-azaindole dimer: further evidence for the concerted double proton transfer in solution. Chemical Physics Letters 2001, 347 (1), 108-114.
55. Park, W. W.; Lee, K. M.; Lee, B. S.; Kim, Y. J.; Joo, S. H.; Kwak, S. K.; Yoo, T. H.; Kwon, O. H., Hydrogen-Bond Free Energy of Local Biological Water. Angew Chem Int Ed Engl 2020, 59 (18), 7089-7096.
56. Chen, Y. T.; Chao, W. C.; Kuo, H. T.; Shen, J. Y.; Chen, I. H.; Yang, H. C.; Wang, J. S.; Lu, J. F.; Cheng, R. P.; Chou, P. T., Probing the polarity and water environment at the protein-peptide binding interface using tryptophan analogues. Biochem Biophys Rep 2016, 7, 113-118.
57. Chua, M. H.; Kwok Wei, S.; Zhou, H.; Xu, J., Recent advances in aggregation-induced emission chemosensors for anion sensing. Molecules 2019, 24, 2711.
58. Zhu, C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Applied Bio Materials 2018, 1 (6), 1768-1786.
59. Chen, J.; Gao, M.; Wang, L.; Li, S.; He, J.; Qin, A.; Ren, L.; Wang, Y.; Tang, B. Z., Aggregation-induced emission probe for study of the bactericidal mechanism of antimicrobial peptides. ACS Applied Materials & Interfaces 2018, 10 (14), 11436-11442.
60. Han, A.; Wang, H.; Kwok, R. T. K.; Ji, S.; Li, J.; Kong, D.; Tang, B. Z.; Liu, B.; Yang, Z.; Ding, D., Peptide-induced AIEgen self-assembly: a new strategy to realize highly sensitive fluorescent light-up probes. Analytical Chemistry 2016, 88 (7), 3872-3878.
61. Shi, H.; Kwok, R. T. K.; Liu, J.; Xing, B.; Tang, B. Z.; Liu, B., Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. Journal of the American Chemical Society 2012, 134 (43), 17972-17981.
62. Merrifield, R. B., Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 1969, 32, 221-96.
63. Sheppard, R., The fluorenylmethoxycarbonyl group in solid phase synthesis. J Pept Sci 2003, 9 (9), 545-52.
64. Wöhr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.; Sato, T.; Sun, X.; Mutter, M., Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. Journal of the American Chemical Society 1996, 118 (39), 9218-9227.
65. Palasek, S. A.; Cox, Z. J.; Collins, J. M., Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 2007, 13 (3), 143-8.
66. Braithwaite, A.; Smith, F. J., High performance liquid chromatography (HPLC). In Chromatographic Methods, Braithwaite, A.; Smith, F. J., Eds. Springer Netherlands: Dordrecht, 1985; pp 212-290.
67. Mant, C. T. C., Y.; Yan, Z.; Popa, T. V.; Kovacs, J. M.; Mills, J. B.; Tripet, B. P.; Hodges, R. S., HPLC analysis and purification of peptides. Methods Mol Biol 2007, 386, 3-55.
68. Chen, L.; Annis, I.; Barany, G., Disulfide bond formation in peptides. Current Protocols in Protein Science 2001, 23 (1), 18.6.1-18.6.19.
69. Chaurand, P.; Luetzenkirchen, F.; Spengler, B., Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry 1999, 10 (2), 91-103.
70. Boesl, U., Time-of-flight mass spectrometry: Introduction to the basics. Mass Spectrometry Reviews 2017, 36 (1), 86-109.
71. Jaskolla, T. W.; Lehmann, W. D.; Karas, M., 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. Proc Natl Acad Sci U S A 2008, 105 (34), 12200-5.
72. Olson, B. J.; Markwell, J., Assays for determination of protein concentration. Curr Protoc Pharmacol 2007, Appendix 3, 3a.
73. Broersen, K.; Jonckheere, W.; Rozenski, J.; Vandersteen, A.; Pauwels, K.; Pastore, A.; Rousseau, F.; Schymkowitz, J., A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer's disease. Protein Eng Des Sel 2011, 24 (9), 743-50.
74. Nielsen, E. B.; Schellman, J. A., The absorption spectra of simple amides and peptides. The Journal of Physical Chemistry 1967, 71 (7), 2297-2304.
75. Liyanage, M. R.; Bakshi, K.; Volkin, D. B.; Middaugh, C. R., Fluorescence spectroscopy of peptides. Methods Mol Biol 2014, 1088, 237-46.
76. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-12.
77. Debora Ferreira, B.-V.; Ortrud Monika, B., Negative and positive staining in transmission electron microscopy for virus diagnosis. In Microbiology in Agriculture and Human Health, Mohammad Manjur, S., Ed. IntechOpen: Rijeka, 2015; p Ch. 3.
78. Pignataro, M. F.; Herrera, M. G.; Dodero, V. I., Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods. Molecules 2020, 25 (20), 4854.
79. Wei, Y.; Thyparambil, A. A.; Latour, R. A., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. Biochim Biophys Acta 2014, 1844 (12), 2331-7.
80. Roy, A.; Bouř, P.; Keiderling, T. A., TD-DFT modeling of the circular dichroism for a tryptophan zipper peptide with coupled aromatic residues. Chirality 2009, 21 (1E), E163-E171.
81. Pace, C. N.; Scholtz, J. M., A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 1998, 75 (1), 422-7.
82. Ding, Y.; Shi, L.; Wei, H., A “turn on” fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant. Chemical Science 2015, 6 (11), 6361-6366.
83. Williamson, J. A.; Loria, J. P.; Miranker, A. D., Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 2009, 393 (2), 383-96.
84. Fortier, M.; Côté-Cyr, M.; Nguyen, V.; Babych, M.; Nguyen, P. T.; Gaudreault, R.; Bourgault, S., Contribution of the 12–17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Frontiers in Molecular Biosciences 2022, 9.
85. Abedini, A.; Plesner, A.; Cao, P.; Ridgway, Z.; Zhang, J.; Tu, L.-H.; Middleton, C. T.; Chao, B.; Sartori, D. J.; Meng, F.; Wang, H.; Wong, A. G.; Zanni, M. T.; Verchere, C. B.; Raleigh, D. P.; Schmidt, A. M., Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. eLife 2016, 5, e12977.
86. Rodriguez Camargo, D. C.; Chia, S.; Menzies, J.; Mannini, B.; Meisl, G.; Lundqvist, M.; Pohl, C.; Bernfur, K.; Lattanzi, V.; Habchi, J.; Cohen, S.; Knowles, T.; Vendruscolo, M.; Linse, S., Surface-catalyzed secondary nucleation dominates the generation of toxic IAPP aggregates. Frontiers in Molecular Biosciences 2021, 8.