簡易檢索 / 詳目顯示

研究生: 張宇泰
Chang, Yu-Tai
論文名稱: 鋁合金薄板應用摩擦攪拌銲接之研究
A Study on Friction Stir Welding of Aluminum Alloy Sheet Metal
指導教授: 鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 鋁合金摩擦攪拌銲接抗拉強度摩擦熱孔洞
英文關鍵詞: aluminum alloy, friction stir welding, tensile strength, heat of friction, cavity
DOI URL: http://doi.org/10.6345/NTNU201900305
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究利用現有鑽床進行加工,透過自行設計的自動進刀機構,並且安裝自製夾具夾持試片,將該機構固定於鑽床工作台上予以施銲,期許以較低成本進行摩擦攪拌銲接完成接合工作。實驗以三款不同自製攪拌棒(M1、M2、M3)對於1050的1mm薄鋁合金加工,並且藉由鑽床轉速(550RPM、1750RPM及3000RPM)及自動進給速率(30、50、60 mm/min)作為施銲參數。於施銲後進行銲道表面觀察、金相顯微實驗、微硬度試驗、抗拉試驗和掃描式電子顯微鏡分析及量測,瞭解加工後的機械性質。經研究獲得以下幾點結論:
    1.M3刀刃因軸肩較小,與母材接觸面積小以至於無足夠摩擦熱,完全無法接合母材;經M2刀刃施銲後的試片,從金相組織觀察其材料融填效果差,抗拉伸強度極低,接合成效不佳;M1刀刃於高轉速抗拉強度有明顯提升,試片1-M1-C3的最大抗拉強度平均值為72.47 MPa,達母材(約120MPa)強度之68%,其次試片1-M1-C2抗拉強度達40.32MPa,所以較佳刀刃為M1。
    2.經M1及M2攪拌棒加工後都有擠料、孔洞缺陷及類溝槽狀缺陷現象。以M1攪拌棒施銲之金相顯微組織其呈現類似沙漏狀結構的銲核區;M2攪拌棒施銲後的顯微組織則為長條結構的銲核區樣貌,但無論是何款攪拌棒其銲核區皆為非對稱。轉速低時攪拌較無足夠摩擦熱充填接合斷面;若轉速提高,接合區硬度下降,且硬度低於母材許多,銲核區缺陷也明顯增加,在銲道RS側的擠料問題及熱機影響區、熱影響區也較AS側明顯。
    3.施銲試片經拉伸後觀察可發現其破斷面並無像母材一樣出現酒窩狀組織,而是呈現劈裂面,可見其未受到充分塑性變形即破壞,因此拉伸試驗之強度均低於母材;另從各破斷面亦可發現其有組織成長之特徵,顯示在摩擦攪拌銲接過程中,其溫度已達再結晶溫度以上,晶粒有成長之現象。

    In this study, current drilling machine is used for Friction Stir Welding (FSW) of aluminum sheets. In order to have a lower cost for welding through FSW process, a self-designed automatic feeding mechanism is used, and a self-made fixture is set to clamp the work piece. Later, keep the feeding mechanism on the drilling machine for welding. In this experiment, three different stir tools (M1、M2、M3) are used for processing on 1050 1mm aluminum sheets. Also, three different rotating speeds of the welding tool (550, 1750 and 3000 rpm) and three kinds of automatic feeding rates (30、50、60 mm/min) are used as welding parameter. After welding, test the quality of machine through weld pass surface watching, metallographic test, microhardness test, tensile test, and Scanning Electronic Microscope (SEM) analyzing and measuring. Three conclusions of this study are shown below:
    1.Because of the thin shoulder of blade M3, there is small contacting area between base metal and blade M3. As the lack of heat of friction, blade M3 cannot connect with base metal; the work piece welding with blade M2 has poor filling result, low tensile strength, and weak connection; M1 blade has a better tensile strength with high rotating speed, and the ultimate tensile strength of work piece 1-M1-C3 is 40.32MPa, which reaches to 68% of tensile strength of base metal (about 120MPa). Tensile strength of the other work piece 1-M1-C2 is 40.32MPa. Therefore, blade M1 is a better option.
    2.After processing through stir tool M1and stir tool M2, flash、cavity defect、groove defect phenomenon are presented. Using stir tool M1weld microstructure presents an hourglass shape structure Weld Nugget Zone (WNZ); stir tool M2 presents weld long string shape microstructure WNZ. Nevertheless, their WNZ are all asymmetric no matter which stir tool is used. Low rotating speed has insufficient friction of heat connecting with the cut surface; if the rotating speed is increased, the hardness of the connecting area declines, and the hardness will be much lower then base metal. Also, the defect of WNZ will obviously be increased. The flash problem and the ThermoMechanically Affected zone (TMAZ)、Heat Affected zone (HAZ) of weld pass RS show more clearly than weld pass AS.
    3.After stretching, the cut surface of the welding work piece has no dimple structure like base metal. On the contrary, it shows cleavage facet. As the result, the work piece is damaged without enough transformation. Thus, the strength of tensile tests are lower then base metal. In addition, the growth of microstructure can be discovered on each cleavage facet. It represents that during the process of FSW, the grain grows when it reaches the recrystallization temperature.

    目錄 謝誌 Ⅰ 中文摘要 Ⅱ 英文摘要 Ⅲ~Ⅳ 目錄 Ⅴ~Ⅶ 表目錄 Ⅷ 圖目錄 Ⅸ~XⅣ 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3研究方法 2 第二章 文獻回顧 3 2.1鋁合金特性及分類 3 2.2 摩擦攪拌銲接 6 2.3 摩擦攪拌棒 16 第三章 實驗方法與步驟 24 3.1實驗設計流程 24 3.2摩擦攪拌銲實驗 26 3.3摩擦攪拌銲施銲加工示意 32 3.4微摩擦攪拌銲之參考試驗 34 3.5顯微組織觀察 37 3.6微硬度試驗 39 3.7拉伸試驗 42 3.8掃描式電子顯微鏡觀察與分析 43 第四章 結果與討論 45 4.1 製程參數對銲道外觀的影響 45 4.2 顯微組織觀察 57 4.3 製程參數對銲道微硬度的影響 72 4.4 拉伸試驗 80 4.5 掃描式電子顯微鏡觀察 84 第五章 結論與建議 92 5.1結論 92 5.2建議 94 參考文獻 95

    1. P. Xue, et al, Sci A, 528, pp. 4683 4689, 2011.
    2. 溫晉源,2024鋁合金熱裂性及異質銲接機械性質之研究,碩士論文,國立臺灣師範大學機電科技研究所,臺北、臺灣 (2010)
    3. 鄭慶民,熱處理型鋁合金銲接性之研究,博士論文,國立交通大學機械工程學系,新竹、臺灣 (2006)
    4. M.M. Shtrikman, “Trends in the development of the friction stir welding process”, Welding International, Vol. 29, No. 3, pp. 230-239, 2015.
    5. M.R. Johnsen “Friction stir welding takes off at Boeing”, Welding Journal, Vol. 78, No. 2, pp. 35-39, 1999.
    6. Yoshihiro Kusuda, “Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle”, Industrial Robot: An International Journal, Vol. 40, No. 3, pp. 208-212, 2013.
    7. 水村 武司、江角 昌邦,「日立製作所における鉄道車両への(摩擦攪拌接合)適用と知財戦略」,特技懇 258号,pp.41-46,特許庁,日本 (2010)
    8. Y.C. Chiou, C.T. Liu, R.T. Lee, “A pinless embedded tool used in FSSW and FSW of aluminum alloy”, Journal of Materials Processing Technology, Vol. 213, No. 11, pp. 1818-1824, 2013.
    9. Hao Wu, Ying-Chun Chen, David Strong, Phil Prangnell, “Stationary shoulder FSW for joining high strength aluminum alloys”, Journal of Materials Processing Technology, Vol. 221, No. 11, pp. 187-196, 2015.
    10. J. R. Davis., Aluminum and Aluminum Alloys-ASM Specialty Handbook. ASM International, 1993, pp. 645.
    96
    11. 張柏逢,使用自我支持式攪拌棒於摩擦攪拌銲接之接合特性研究,國立臺灣師範大學機電科技研究所,台北、台灣(2015)
    12. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, GB Patent 9125978.8, Dec. 1991
    13. L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, Y.S. Zeng, “Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti–6Al–4V joint", Scripta Materialia, Vol. 98 , pp. 44-47, 2015.
    14. W. M. Thomas, C. S. Wiesner, D. J. Marks, D. G. Staines, “Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials", Science and Technology of Welding and Joining, Vol. 14 , pp. 247-253, 2009.
    15. Ahmed, M. M. Z., Wynne, B. P., Martin, J. P., “Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718", Science and Technology of Welding and Joining ,Vol. 18 , pp. 680-687, 2013.
    16. Xiaoqian Ma, Stanley M. Howard, Bharat K. Jasthi, “ Friction Stir Welding of Bulk Metallic Glass Vitreloy 106a ", Journal of Manufacturing Science and Engineering , Vol. 136 , No. 5, pp.051012-1-051012-7, 2014.
    17. 國防科工局發布222項航天行業標準(2011 年),航天標準化,2012年 第1期,46。
    18. P. L. Threadgill, A. J. Leonard, H. R. Shercliff, P. J. Withers, “Friction stir welding of aluminium alloys", International Materials Reviews, Vol. 54, No. 2, pp.49-93, 2009.
    97
    19. 林耀隆,摩擦攪拌銲接過程之作用力和攪拌能量之實驗研究,碩士論文,國立中山大學機械與機電工程學系,高雄、臺灣 (2006)
    20. R.S. Mishraa, Z.Y. Ma, “Friction stir welding and processing", Materials Science and Engineering: R: Reports ,Vol.50 , pp.1-78, 2005.
    21. 張維麟,6061鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究,碩士論文,機械工程研究所,國立中正大學,2005。
    22. 金信甫,微摩擦攪拌銲接應用於5086鋁合金薄板機械性質與微結構之研究,碩士論文,機械工程研究所,崑山科技大學,2011。
    23. 程绍瑋,微摩擦攪拌銲接函工機之研發,碩士論文,機械工程研究所,崑山科技大學,2013。
    24. Friction stir welding and processing R.S. Mishraa,*, Z.Y. Mab aCenter for Friction Stir Processing, Department of Materials Science and Engineering, University of Missouri, Rolla, MO 65409, USARolla, MO 65409, USA
    25. Y.G.Kim,H.Fujii,T.Tsumura,T.Komazaki and K. Nakata, Three defect types in friction stir welding of aluminum dir casting alloy, Materials Science and Engineering A,Vol.415(2006)250-254
    26. H.Fujii,Y.G.Kim,T.Tsumura,T.Komazaki and K. Nakata, Estimation of material flow in stir zone during friction stir welding by distribution measurement of Si particles, Materials Transacation,Vol.47,No.1(2006)227-232
    27. Y.G.Kim,H.Fujii, T.Tsumura,T.Komazaki and K.Nakata, Three defect types Y.G.Kim,H.Fujii, T.Tsumura,T.Komazaki and K.Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Materials Science and in friction stir welding of aluminum die casting alloy, Materials Science and Engineering A, Vol.415(20Engineering A, Vol.415(2006)25006)250--254254
    28. W.M.Thomas,K.I. Johnson and C.S. Wiesner,Friction stir welding-recent developments in tool and process technologies, Advanced Engineering
    98
    Materials,Vol.5 No.7(2003)485-490.
    29. W.M.Thomas,Friction stir welding and related friction process characteristics, Proceedings, INALCO, Cambridge, 16 April 1998.
    30. W.M.Thomas and R.E. Andrews, High performance tools for friction stir welding (FSW),International Patent Application WO 9952669.
    31. W.M.Thomas and M.F. Gittos, Development of friction stir tools for the welding of thick (25mm) aluminium alloys. TWI Research Board Report 6921999 December 1999.
    32. Y. N. Zhang, X. Cao, S. Larose, P. Wanjara, “Review of tools for friction stir welding and processing”, Canadian Metallurgical Quarterly, Vol. 51, No.3, pp. 250-261, 2012.
    33. O. T. Midling, E. J. Morley, and A. Sandvik, “Friction stir welding”, European Patent Specification, EP 0 752 926 B1, 1995.
    34. Y.-H. Zhao, S.-B. Lin, F.-X. Qu and L. Wu, Influence of pin geometry on
    material flow in friction stir welding process, Materials Science and Technology, Vol.22, No.1 (2006) 45-50.
    35. R.A. Prado, L.E. Murr , K.F. Soto and J.C. McClure, Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC, Materials Science and Engineering A349 (2003) 156-165.
    36. Y. N. Zhang, X. Cao, S. Larose, P. Wanjara, “Review of tools for friction stir welding and processing”, Canadian Metallurgical Quarterly, Vol. 51, No.3, pp. 250-261, 2012.
    37. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Drawes, “Friction Stir Butt Welding”, G B Patent Application No. 9125978.8, Dec. 1991; S.S. Patent No. 5460317, Oct., 1995.
    99
    38. W. M. Thomas, K. I. Johnson and C. S. Wiesner, “Friction stir welding-recent developments in tool and process technologies”, Advanced Engineering Materials, Vol. 5, No. 7, 2003, pp.485-490.
    39. W. M. Thomas, D. G. Staines, E. D. Nicholas and P. Evans, “Reversal stir welding- Re-StirTM- preliminary trials”, Published on the Internet 23rd, TWI, Retrieved from http://www.twi.co.uk/j32k/unprotected/pdfs/spwmtjan2003.pdf, 2003.
    40. Friction stir welding and processing R.S. Mishraa,*, Z.Y. Mab a Center for Friction stir welding and processing R.S. Mishraa,*, Z.Y. Mab a Center for Friction Stir Processing, Department of Materials Science and Engineering, Friction Stir Processing, Department of Materials Science and Engineering, University of Missouri, Rolla, MO 65409, USAUniversity of Missouri, Rolla, MO 65409, USA
    41. G. Buffa, J. Hua, R. Shivpuri and L. FratiG. Buffa, J. Hua, R. Shivpuri and L. Fratini, Design of the friction stir ni, Design of the friction stir welding tool using the continuum based FEM model, Materials Science and welding tool using the continuum based FEM model, Materials Science and Engineering A 419 (2006) 381Engineering A 419 (2006) 381--388.388.
    42. K. Kumar and Satish V. Kailas, The role of friction stir welding tool on K. Kumar and Satish V. Kailas, The role of friction stir welding tool on material flow and weld formation, Materials Smaterial flow and weld formation, Materials Science and Engineering A, cience and Engineering A, Vol.485 (2008) 367Vol.485 (2008) 367--374.374.
    43. K. Kumar, Satish V. Kailas and T. S. Srivatsan, Influence of Tool Geometry in Friction Stir Welding, Materials and Manufacturing Processes, Vol.23 (2008) 188-194.
    44. K. Kumar, Satish V. Kailas and T. S. Srivatsan, The Role of Tool Design in
    Influencing the Mechanism for the Formation of Friction Stir Welds in
    Aluminum Alloy 7020, Materials and Manufacturing Processes, Vol.26 (2011) 915-921.
    45. K. Kumar, Satish V. Kailas and T. S. Srivatsan, Influence of Tool Geometry in Friction Stir Welding, Materials and Manufacturing Processes, Vol.23
    100
    (2008) 188-194.
    46. E.F. Shultz, E.G. Cole, C.B. Smith, M.R. Zinn, N.J. Ferrier and F.E. Pfefferkorn, Effect of compliance and travel angle on friction stir welding with gaps, Journal of Manufacturing Science and Engineering, Vol. 132 (2010) 1-9.
    47. H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang and Y. Zhao, The investigation of typical welding defects for 5456 aluminum alloy friction stir welds, Materials Science and Engineering A, Vol.433 (2006) 64-69.
    48. W. M. Thomas, E. D. Nicholas, J. C. Needham, P. Temple-Simth, S. W. Kallee, and C. J. Dawes, “Friction stir welding”, UK Patent Application, GB 2 306 366 A, 1997.
    49. W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “Feasibility of friction stir welding steel”, Science and Technology of Welding and Joining, Vol. 4, No. 6, 1999, pp.365-372.
    50. R. A. Prado, L. E. Murr, D. J. Shindo, K. F. Soto, “Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: a preliminary study”, Scripta Materlia, Vol. 45, 2001,
    51. R. A. Prado, L. E. Murr, D. J. Shindo, K. F. Soto, “Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: a preliminary study”, Scripta Materlia, Vol. 45, 2001, pp.75-80.
    52. ASTM Standard E407 - 07ε1
    53. ASTM E-140
    54. ASTM E-384
    55. ASTM Standard E384 - 11ε1
    56. ASTM Standard E8/E8M – 13

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE