簡易檢索 / 詳目顯示

研究生: 許 元錫
論文名稱: 交錯型矽奈米線場效電晶體之製備與應用
指導教授: 王禎翰
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 生物感測器交錯型矽奈米線場效電晶體
論文種類: 學術論文
相關次數: 點閱:383下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽奈米線場效電晶體 (silicon nanowire field-effect transistor, SiNW-FET) 生物感測器,具有高靈敏度 (sensitivity)、專一選擇性 (selectivity)、即時回應 (real-time response)、及無標記檢測 (label-free detection) 等的優異特性,目前在生物感測研究方面有著非常好的發展。本論文致力於矽奈米線場效電晶體改良與製備,使其發展成雙分子偵測系統。
    傳統上矽奈米線場效電晶體的感測,多是針對單一分子做感測,而在本研究中,我們遵循由下而上 (bottom-up) 的製程方法,並結合了選擇性表面修飾 (selective surface modification, SSM),經過多道程序製作出交錯型矽奈米線場效電晶體。在實驗中,我們使用了黃光製程、矽奈米線成長及轉印、電子微影製程以及防水層製作等步驟,多次嘗試後成功得到了交錯型矽奈米線場效電晶體 (cross-type SiNW-FET),最後使用Avidin以及GST兩種待測分子,測量其電訊號變化證實元件的可用性,並建立出了一套可行的製程方法。利用此項新興元件做雙分子的偵測,我們將可做許多兩種有關聯性分子的研究。

    口試委員簽名表 i 謝誌 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 簡稱用語對照表 x 第一章 序論 1 1-1 矽奈米線場效電晶體之生物感測器 1 1-1.1 工作原理與簡介 1 1-1.2 製備方法與發展 5 1-2 交錯型矽奈米線場效電晶體之製備 8 1-2.1 研究動機 8 1-2.2 實驗構思與方向 10 第二章 實驗方法 12 2-1 金奈米粒子合成 12 2-2 矽奈米線合成 14 2-3 氣相連接分子修飾 18 2-4 電晶體元件製程 20 2-4.1 外層電極 20 2-4.2 矽奈米線放置 22 2-4.3 內層電極 23 2-4.4 防水層 25 2-5 液相受體分子修飾 26 2-6 感測溶液槽製備 28 2-7 電訊號量測系統建立 29 2-8 實驗儀器 32 第三章 實驗結果與討論 36 3-1 金奈米粒子合成 36 3-2 矽奈米線合成 39 3-3 氣相修飾之矽奈米線 44 3-4 電晶體元件製程結果 46 3-5 電訊號量測結果 52 第四章 總結 57 參考文獻 58

    1. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., and Lieber, C. M. (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66-69.
    2. Hu, J. T., Odom, T. W., and Lieber, C. M. (1999) Chemistry and physics in onedimension: Synthesis and properties of nanowires and nanotubes, Accounts Chem Res 32, 435-445.
    3. Liang, X. G., and Chou, S. Y. (2008) Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis, Nano Lett 8, 1472-1476.
    4. Morales, A. M., and Lieber, C. M. (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208-211.
    5. Raymo, F. M., and Yildiz, I. (2007) Luminescent chemosensors based on semiconductor quantum dots, Phys Chem Chem Phys 9, 2036-2043.
    6. Rosi, N. L., and Mirkin, C. A. (2005) Nanostructures in biodiagnostics, Chem Rev 105, 1547-1562.
    7. Tansil, N. C., and Gao, Z. Q. (2006) Nanoparticles in biomolecular detection, Nano Today 1, 28-37.
    8. Chen, K. I., Li, B. R., and Chen, Y. T. (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today 6, 131-154.
    9. Cui, Y., Wei, Q. Q., Park, H. K., and Lieber, C. M. (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289-1292.
    10. Park, I. Y., Li, Z. Y., Li, X. M., Pisano, A. P., and Williams, R. S. (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection, Biosens Bioelectron 22, 2065-2070.
    11. Cui, Y., Duan, X.F., Hu, J.T. and Lieber, C.M. (2000) Doping and electrical transport in silicon nanowires, Journal of Physical Chemistry B 104, 5213-5216.
    12. Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U., and Lieber, C. M. (2003) High performance silicon nanowire field effect transistors, Nano Lett 3, 49-152.
    13. Tans, S. J., Verschueren, A. R. M., and Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube, Nature 393, 49-52.
    14. Chen, R. J., Choi, H. C., Bangsaruntip, S., Yenilmez, E., Tang, X. W., Wang, Q., Chang, Y. L., and Dai, H. J. (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices, J Am Chem Soc 126, 1563-1568.
    15. Patolsky, F., Timko, B. P., Zheng, G. F., and Lieber, C. M. (2007) Nanowire-based nanoelectronic devices in the life sciences, Mrs Bull 32, 142-149.
    16. Elfstrom, N., Juhasz, R., Sychugov, I., Engfeldt, T., Karlstrom, A. E., and Linnros, J. (2007) Surface charge sensitivity of silicon nanowires: Size dependence, Nano Lett 7, 2608-2612.
    17. Grieshaber, D., MacKenzie, R., Voros, J., and Reimhult, E. (2008) Electrochemical biosensors-Sensor principles and architectures, Sensors-Basel 8, 1400-1458.
    18. Mohammad, S. N. (2006) Self-catalysis: A contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition, J Chem Phys 125.
    19. Feng Xu, John W. Durham, III, Benjamin J. Wiley, and Yong Zhu. (2011) Strain-Release Assembly of Nanowires on Stretchable Substrates, ACSNANO 5, 1556–1563
    20. Lu, W., and Lieber, C. M. (2006) Semiconductor nanowires, J Phys D Appl Phys 39, R387-R406.
    21. Lin, T. W., Hsieh, P. J., Lin, C. L., Fang, Y. Y., Yang, J. X., Tsai, C. C., Chiang, P. L., Pan, C. Y., and Chen, Y. T. (2010) Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor, P Natl Acad Sci USA 107, 1047-1052.
    22. Patolsky, F., Zheng, G. F., and Lieber, C. M. (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nat Protoc 1, 1711-1724.
    23. Stern, E. et al. (2007) Importance of the debye screening length on nanowire field effect transistor sensors, Nano Lett 7, 3405-3409.
    24. Cui, Y, Lauhon, L. J., Gudiksen, M. S., Wang, J., and Lieber, C. M. (2001) Diameter-controlled synthesis of single-crystal silicon nanowires, Applied Physics letters 78, 2214-2216.
    25. Li, B. R., Chen, C.W., Yang, W. L., Lin, T. Y., Pan, C. Y., and Chen, Y. T. (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor, Biosensors and Bioelectronics 45, 252–259.
    26. Laitinen, O. H., Hytonen, V. P., Nordlund, H. R., and Kulomaa, M.S. (2006) Genetically engineered avidins and streptavidins, Cell Mol Life Sci 63, 2992-3017.
    27. Adam, D. M., Christy, L. H., Chad, A. M., Richard, P. V. D., and Hilary, A. G. (2004) Color my nanoworld, J Chem Educ 81, 544 A.

    下載圖示
    QR CODE