研究生: |
林伯聰 Lin, Po-Tsung |
---|---|
論文名稱: |
精微錯置式切削系統開發應用於精微菲涅爾透鏡製作 Development of a misplaced micro cutting system for application in fabrication of a micro Fresnel lens |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 高速高精度錯置式切削系統 、精微菲涅爾透鏡 、模仁 |
英文關鍵詞: | High-speed-precision misplaced machining system, micro Fresnel lens, mold-core |
DOI URL: | https://doi.org/10.6345/NTNU202203834 |
論文種類: | 學術論文 |
相關次數: | 點閱:74 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在以低成本開發精微菲涅爾透鏡(Fresnel lens)之製程技術,並應用於建構光電及生醫領域系統所需之微細光斑,以及建立精微透鏡製造技術之自主能力。研究之初,先行開發一部左右對稱設計的「高速高精度錯置式切削系統」,使微細軸件及單晶鑽石刀具分別安置於高速主軸(35,000rpm)及精密XY位移平台上。透由刀具與工件的位置交換,對小直徑的透鏡模仁素材提供高速原子差排運動,使菲涅爾透鏡模仁因高速切削而獲致高平整度(Flatness)及良好表面粗糙度的光學等級結構表面。菲涅爾透鏡之焦距、外徑、最大深度與最大節距設計分別為1.0mm, 0.9mm, 0.1mm和0.05mm。模仁切削的實驗結果顯示,在10000rpm主軸轉數,1μm切削深度及0.10.05mm/min的多段式進給切削條件下,能成功製作出Ra25nm的表面粗糙度之精微菲涅爾透鏡模仁;而在160mm/s的射出速度,110°C模具溫度以及140MPa的保壓壓力下,能以壓克力材料成功射出成形精微菲涅爾透鏡。透由簡易光學系統量測發現,其透鏡光斑直徑可達2.4μm,證實本研究開發之製程技術,能精確研製精微菲涅爾透鏡,深具商化價值。
This study presents a novel, economical and efficient processes technique for precisely machining the micro Fresnel lens mold-core to produce the micro Fresnel lens made of PMMA for creating a micro light-spot in the applied fields of electro-optical and biomedical system and establishing the autonomous technology of micro lens fabrication. At the beginning, a high-speed, -precision misplaced machining system with bilateral symmetry is first developed and proposed. The micro workpiece is clamped on the high-speed spindle (35,000rpm) on the Z-axis while the diamond tool is located on the working tank on the XY-axis. The tool position and the workpiece position is exchanged whereby the micro lens mold-core can be machined under a required high-speed condition. High-speed motion of dislocation atom-by-atom decreases the lattice resistance and improves the surface roughness of the machined surface, thereby, creating a structure surface with an excellent flatness and surface roughness. The focal length, the outter diameter, the maximum depth and the maximum pitch of the designed Fresnel lens are 1.0mm, 0.9mm, 0.1mm and 0.05mm, respectively. Experimental results demonstrated that a Fresnel lens mold-core can be machined successfully with Ra25nm in surface roughness when using the conditions of speed of 10000rpm, depth of cutting of 1μm and multi-stage feed-rates of 0.10.05mm/min, respectively. The micro Fresnel lens made of PMMA has been efficiently formed by using micro injection modeling under the condirions of injection speed of 160mm/s, mold temperature of 110°C and packing pressure of 140MPa, respectively. The diameter of light-spot is measured and obtained at 2.4µm by using a simple leaser optical system confirming the validity of potential commercial development of the proposed processes technique. This development is expected to contribute substantially to the electro-optical and biomedical engineering industries.
[1] Camera Module Market Analysis:
http://www.grandviewresearch.com/industry-analysis/camera-module-industry
[2] LASER FOCUS WORLD:IHS市場調查http://www.laserfocusworld.com/articles/print/volume-50/issue-12/features/novel-optics-plastic-micro-optics-cater-to-automotive-hud-design.html
[3] Xie W.T., Daia Y.J., Wang R.Z., Sumathy K., 2011, Concentrated solar energy applications using Fresnel lenses: A review, Renewable and Sustainable Energy Reviews, (15), 2588-2606
[4] Davis A., Bush R.C., Harvey J.C., Foley M.F., 2001, Fresnel Lenses in Rear Projection Displays, SID Proceedings, (4)
[5] Miller O.E., McLeod J.H., Sherwood W.T., 1951, Thin sheet plastic Fresnel lenses of high aperture, Journal of The Optical Society of America, (41)11, 807-814
[6] Motamedi M.E., 1997, Micro-opto-electro-mechanical systems, Opt. Eng., (36), 1280-1281
[7] Jesacher A., Furhapter S., Bernet S., Ritsch-Marte M., 2004, Diffractive optical tweezers in the Fresnel regime, Opt.Express, (12)10, 2243-2250
[8] Ametek Precitech Ultra Precision, http://www.precitech.com/index.html
[9] Toshiba ultraprecision machine, http://www.toshiba-machine.co.jp
[10] Takeuchi Y., Maeda S., Kawai T., Sawada K., 2002, Manufacture of Multiple-focus Micro Fresnel Lenses by Means of Non-rotational Diamond Grooving, CIRP Annals - Manufacturing Technology, (51)1, 343-346
[11] Vila-Comamala J., Borrise X., Perez-Murano F., Campos J., Ferrer S., 2006, Nanofabrication of Fresnel zone plate lenses for X-ray optics, Microelectronic Engineering, (83)4-9, 1355-1359
[12] Jefimovs K., O. Bunk, Pfeiffer F., Grolimund D., van der Veen J.F., David C., 2007, Fabrication of Fresnel zone plates for hard X-rays, Microelectronic Engineering, (84)5-8, 1467-1470
[13] Yan J.W., Watanabe K., Nakagawa Y., 2012, Fabrication of Thin-Film Fresnel Optics by Combining Diamond Turning and MEMS Techniques, Procedia CIRP (4), 146-150
[14] Kasztelanic R., Kujawa I., Stepien R., Harasny K., Pysz D., Buczynski R., 2013, Fresnel lens fabrication for broadband IR optics using hot embossing process, Infrared Physics & Technology, (60), 1-6
[15] Neo D.W.K., Kumar A.S., Rahman M., 2015, An automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array, Precision Engineering, (41) 55–62
[16] 手動雕花機:http://www.horologyme.com/2016/02/inside-the-grieb-benzinger-manufacture/gb_guilloche_1/
[17] 雕花表面:PATEK PHILIPPE:http://www.patek.com/cn/%E7%99%BE%E8%BE%BE%E7%BF%A1%E4%B8%BD%E4%B8%BB%E9%A1%B5
[18] Huang R., Zhang X.Q., Rahman., Kumar A.S., Liu K., 2015, Ultra-precision machining of radial Fresnel lens on roller moulds, CIRP Annals - Manufacturing Technology, (64)1, 121–124
[19] Yu Y.H., Tian Z.N., Jiang T., Niu L.G., Gao B.R., 2015, Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing, Optics Communications, (362), 69-72
[20] O'Connor J.J., Robertson E.F., 2011, Augustin-Jean Fresnel, MacTutor History of Mathematics archive, University of St Andrews
[21] Levitt T., Short B.F., 2013, The Story of Augustin Fresnel, 1st ed. New York: W. W. Norton & Company, 288
[22] 思渤科技:http://www.cybernet-ap.com.tw/zh.php
[23] Shaw M.C., 2005, Metal cutting principles(Second edition), New York Oxford university press, pp. 15-24
[24] 洪良德編著,2003,切削刀具學,全華科技圖書股份有限公司
[25] Smith W.F., Hashemi J., 2011, (Fifth Edition in SI Unit) Foundations of materials science and engineering, McGraw-Hill, pp.56
[26] 彭世軒,2009,以三維準穩態分子靜力學切削模式模擬奈米級正交切削單晶矽在不同切削條件之研究,國立台灣科技大學,pp.113
[27] Blank V.D., Kulnitskiy B.A., Perezhogin I.A., 2009, Structural peculiarities of carbon onions, formed by four different methods: Onions and diamonds, alternative products of graphite high-pressure treatment, Scripta Materialia, (60)6, 407-410
[28] made in zelenograd,化學氣相沉積,http://www.made-in-zelenograd.com/
[29] 曾永華、陳柏穎、鄭宇明、游銘永,2014,人造鑽石的合成及應用,科學發展,497期,60-67
[30] H. Sumiya, 2014, 3.09-HPHT Synthesis of Large High-Quality Single Crystal Diamonds, Reference Module in Materials Science and Materials Engineering, (3), 195-215
[31] 專利:Eversole William G, 1962, Synthesis of Diamond, US Patents no. 3030187,
[32] 陳慧蓉、張煥正,2011,半導體與醫學界的新星-鑽石,科學月刊,496期,285
[33] Schuelke T., Grotjohn T.A., 2013, Diamond polishing, Diamond & Related Materials, (32), 17-26
[34] 台中精機,立式綜合加工機Vcenter 55/70,www.or.com.tw
[35] 慶鴻機電工業股份有限公司,線切割放電加工機CW640S1 ,http://www.chmer.com/tw/
[36] Sodick,精微塑膠射出成形機LA40,操作及保養手冊
[37] Hopmann Ch., Fischer T., 2015, New plasticising process for increased precision and reduced residence times in injection moulding of micro parts, CIRP Journal of Manufacturing Science and Technology, (9), 51-56
[38] 沢田 慶司,2011,わかりやすい押出成形技術,丸善出版
[39] NSK:https://www.nsk-nakanishi.co.jp
[40] 聯東金屬有限公司:http://www.landon.com.tw/blog/index.php?load=read&id=1
[41] Wang, Y. Zhao, Wang J., 2009, Wear-rersist Electordes for Micro-EDM, Chinese Journal of Aeronautics, (22), 339-342
[42] 楊凱傑,2014,高頻振動輔助之智能化臥式精微工具機開發與Zerodur®陶瓷玻璃奈米研銑加工研究,國立臺灣師範大學機電工程學系碩士論文,pp. 49
[43] FACT 江信有限公司:http://www.factdiamond.com/
[44] 帝固鑽石,人工單晶鑽石材料:http://www.diku.com.tw/goods.php?act=view&no=1
[45] Synthetic Diamond, http://www.matweb.com/
[46] 奇美實業,CM-205M:http://www.chimeicorp.com/zh-tw/
[47] JEOL, Scanning Electron Microscope, JSE-6360, http://www.jeol.co.jp/en/
[48] OLYMPUS,雷射共軛焦顯微鏡OLS4100,http://www.olympus-ims.com/zh/metrology/ols4100/
[49] 黃奕豪,2012,微型化數位全像顯微鏡,國立中央大學光電科學與工程學系碩士論文
[50] Lai X.J., Tu H. Y., Wu C.H., Lin Y.C., Cheng C.J., 2015, Resolution nhancement of spectrum normalization insynthetic aperture digital holographic microscopy, Applied optics, (54)1, 51-58
[51] 線性馬達規格 Aerotech:https://www.aerotech.com/
[52] 廖運炫、李忠玲、楊益群,2012,CNC工具機之顫振抑制策略,機械工業雜誌:348期,80-94
[53] Marinescu I.D., Rowe W.B., Dimitrov B., Ohmori H., 2013. Tribology of Abrasive Machining Processes, second ed. Elsevier, Waltham, 207-208
[54] Taylor F.W., 1906, On the art of cutting metals, The american society of mechanical engineers (ASME), 28, 31-58.
[55] 楊錫杭、黃廷合編著,2012,微機械加工概論,全華科技圖書股份有限公司, pp.10-3
[56] 林志鴻,2002,微射出快速模溫控制系統與玻璃模仁表面微結構複製成型性探討,國立臺灣大學機械工程研究所碩士論文
[57] Packianather M., Griffiths C., Kadir W., 2015, Micro injection moulding process parameter tuning, Procedia CIRP, (33), 400-405
[58] Sortino M., Totis G., Kuljanic E., 2014, Comparison of Injection Molding Technologies for the Production of Micro-Optical Devices, Procedia Engineering, (69), 1296-1305
[59] 楊申語,粘世智,黃勝田,2004,具雙面微結構之超薄件微射出成型,中國機械工程學會第二十一屆全國學術研討會論文集