研究生: |
徐仲萱 Hsu, Chung-Hsuan |
---|---|
論文名稱: |
運用點矩陣全像片呈現擴增實境之研究 Augmented Reality on a Dot Matrix Hologram |
指導教授: |
王希俊
Wang, Hsi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系 Department of Graphic Arts and Communications |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 擴增實境 、全像術 、光柵 |
英文關鍵詞: | AR marker, Holography, Grating |
論文種類: | 學術論文 |
相關次數: | 點閱:211 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
擴增實境辨識圖案 (AR Marker) 大多以正方形的黑框呈現,有助於影像辨識以產生虛擬物件 (Virtual Object),但辨識圖案本身並非給人眼觀看,且影響了設計的美感。因此,本研究的目的為將具有變圖功能之點矩陣全像片與擴增實境辨識圖案結合,在正常觀看角度下顯示有意義之圖案,而在特定角度觀看則會顯現擴增實境辨識圖案並帶出擴增實境功能。此點矩陣全像片之設計,需在全像影像的彩色索引檔與灰階檔建立後,輸出不同角度及間距之光柵點,讓點矩陣全像片產生變圖的效果。結果發現,使用點矩陣全像片能夠成功觸發擴增實境效果,透過變圖功能可於同一張全像片上帶出不同的虛擬物件。另外,本研究也針對傳統的擴增實境辨識圖案與點矩陣全像片的擴增實境辨識圖案進行測試,將攝影機設置於不同的角度及不同的距離,比較兩者在何種條件下能成功地帶出擴增實境。最後,根據問卷調查的結果,發現相較於傳統的擴增實境辨識圖案,大部分的使用者較喜歡全像片的擴增實境辨識圖案。本研究成功的將點矩陣全像片與擴增實境結合,此項技術為世界首創,並且在未來更具備了發展的潛力。
Augmented Reality (AR) marker helps pattern recognition and generates virtual objects, but it always be presented by a black square and hinders the aesthetics of overall design. The objective of this proposal is to integrate AR and the image-switching function of dot matrix hologram, which makes the marker invisible under a meaningful cover image from the normal observation angle. The AR marker can be detected from a specific angle. To design the dot matrix hologram, color index image and grayscale image are used to output the grating spots with different pitches and orientations on the photoresist, which lets the dot matrix hologram possesses the image switching function. In addition, this research makes compare between hologram’s marker and visual marker, to analyze in which the condition can be satisfied to bring out the AR virtual object when camera detects from the different angle or different distance. The result shows the AR effect can be triggered successfully by using the dot matrix hologram, and, the same hologram also brings the distinct virtual object when image-switching effect is in implementation. Besides, this research compares the traditional AR marker and the holographic AR marker in different angles and distances of camera, to detect the conditions which AR effect can be correctly presented. Eventually, the data of questionnaire indicates that most of the users prefer the holographic AR marker. This research combines dot matrix hologram and AR, which is the world’s first and has many potential applications in the future.
一、中文部分
王希俊、傅如尉、徐仲萱 (2012年10月)。以Matlab為基礎之數位點矩陣全像片設計與教學應用。【MATLAB & Simulink Tech Forum and Expo】技術高峰會發表之論文,新竹喜來登大飯店。
林子淵 (2012)。3D點矩陣全像片呈現經典動態影像之研究 – 以盧彥勳晉級溫布登八強親吻手指及指向天際動作為例 (未出版之碩士論文)。國立臺灣師範大學,臺北市。
陳怡惠 (2008)。點矩陣全像片與數位典藏整合之創新加值研究 (未出版之碩士論文)。國立臺灣師範大學,臺北市。
許素梅 (2012)。以科技接受模式探討電子書使用與需求之研究 (未出版之碩士論文)。國立臺灣師範大學,臺北市。
楊博文 (2005)。全像影像應用於影音互動裝置系統設計之研究 (未出版之碩士論文)。國立臺灣師範大學,臺北市。
劉文心 (2008)。以紅外線浮水印為基礎之擴增實境創新研究 (未出版之碩士論文)。國立臺灣師範大學,臺北市。
二、英文部分
Andrulevičius, M., Tamulevičius, T., & Tamulevičius, S. (2007). Formation and analysis of dot-matrix holograms. Materials Science, 13(4), 278-281.
Azuma, R. T. (1997). A survey of augmented reality. Teleoperators and Virtual Environments, 6(4), 355-385.
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34-47. doi: 10.1109/38.963459
Bove, V. M. (2012). Display holography’s digital second act. Proceedings of the IEEE, 100(4), 918-928. doi: 10.1109/JPROC.2011.2182071
Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56-63. doi: 10.1109/MC.2012.111
Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The MagicBook—Moving seamlessly between reality and virtuality. IEEE Computer Graphics and Applications, 21(3), 6-8. doi: 10.1109/38.920621
Davis, F. S. (1993). US Patent No. 5,262,879. Houston, TX: Dimensional Arts Inc.
Demuynck, O., & Menéndez, J. M. (2013). Magic Cards: A new augmented-reality approach. IEEE Computer Graphics and Applications, 33(1), 12-19. doi: 10.1109/MCG.2012.94
Elbasiouny, E. M., Medhat, T., Sarhan, A., & Eltobely, T. E. (2011). Stepping into augmented reality. International Journal of Networked Computing and Advanced Information Management, 1(1), 40-47.
Gabor, D. (1948). A new microscopic principle. Nature, 161(4098), 777-778. doi: 10.1038/161777a0
Gervautz, M., & Schmalstieg, D. (2012). Anywhere interfaces using handheld augmented reality. Computer, 45(7) 26-31. doi: 10.1109/MC.2012.72
Henderson, S., & Feiner, S. (2011). Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Transactions on Visualization and Computer Graphics, 17(10), 1355-1368. doi: 10.1109/TVCG.2010.245
Ha, J., Jung, J., Han, B., Cho, K., & Yang, H. S. (2011, March). Mobile augmented reality using scalable recognition and tracking. Paper presented at the meeting of IEEE Virtual Reality, Singapore. doi: 10.1109/VR.2011.5759473
Hsu, C. H., & Wang, H. C. (2012, Oct.). Augmented reality on a dot matrix hologram. Paper presented at 6th International Conference on New Trends in Information Science and Service Science, Taipei, Taiwan, 23-26.
Hsu, C. H., & Wang, H. C. (2013). Implementation of augmented reality by using image-switching effect on a dot matrix hologram. Journal of Next Generation Information Technology, 4(1), 48-56.
Ishii, S. (2006). Artistic representation with holography. Forma, 21(1), 81-92.
Johnston, S. F. (2005). From white elephant to Nobel Prize: Dennis Gabor's wavefront reconstruction. Historical Studies in the Physical and Biological Sciences, 36(1), 36-70. doi:10.1525/hsps.2005.36.1.35
Juan, M. C., & Joele, D. (2011). A comparative study of the sense of presence and anxiety in an invisible marker versus a marker augmented reality system for the treatment of phobia towards small animals. International Journal of Human-Computer Studies, 69(6), 440-453. doi: 10.1016/j.ijhcs.2011.03.002
Kato, H., & Kato, T. (2011, Jan.). A marker-less augmented reality based on fast fingertip detection for smart phones. Paper presented at the meeting of IEEE Consumer Electronics 2011, Las Vegas, NV. doi: 10.1109/ICCE.2011.5722498
Lee, C., Rincon, G. A., Meyer, G., Höllerer, T., & Bowman, D. A. (2013). The effect of visual realism on search tasks in mixed reality simulation. IEEE Transactions on Visualization and Computer Graphics, 19(4), 547-556. doi: 10.1109/TVCG.2013.41
Leith, E. N., & Upatnieks, J. (1964). Wavefront reconstruction with diffused illumination and three-dimensional objects. Journal of the Optical Society of America, 54(11), 1295-1301.
Lohmann, A. W., & Paris, D. P. (1967). Binary fraunhofer holograms, generated by computer. Applied Optics, 6(10), 1739-1748.
Luo, T., Wang, D., Wang, Y., Cui, H., & Zhang, Y. (2011, March). Fingerprint Acquisition for the Criminal Investigation by Digital Holography. Paper presented at the International Conference on Information Science and Technology, Nanjing. doi: 10.1109/ICIST.2011.5765326
Maripov, A., & Shamshiev, T. (1999). The superhologram. Journal of Optics A-pure and Applied Optics, 1(3), 354-358. doi: 10.1088/1464-4258/1/3/004
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77-D(12), 1321-1329.
Molcer, P. S., & Delic, V. (2011). Exploring the effectiveness of interactive on-line exercises in project accomplishing in the course: Intelligent control systems. International Journal of Engineering Education, 27(2), 257-265.
Navab, N., Blum, T., Wang, L., Okur, A., & Wendler, T. (2012). First deployments of augmented reality in operating rooms. Computer, 45(7), 48-55. doi: 10.1109/MC.2012.75
Park, H., & Park, J. I. (2010). Invisible marker-based augmented reality. International Journal of Human-Computer Interaction, 26(9), 829-848. doi: 10.1080/10447318.2010.496335
Sakuma, H., Yamabe, T., & Nakajima, T. (2012, Sept.). Enhancing traditional games with augmented reality technologies. Paper presented at the 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, Fukuoka, Japan. doi: 10.1109/UIC-ATC.2012.95
Shafipour, G., & Fetanat, A. (2012). WWEM: A new educational software package based on MATLAB for optimal designing of wire winding of electrical machines to undergraduate students. International Journal of Engineering Education, 28(1), 219-226.
Turner, M. (2012, July). Quasi-skin and post-religion: Lin Pey Chwen's Eve Clones (2010-2011). N. Paradoxa: International Feminist Art Journal, 30, 33-38.
van Renesse, R. L. (2004, May.). Security aspects of commercially available dot matrix andimage matrix origination systems. Paper presented at the SPIE International Conference on Optical Holography and its Applications, Kiev, Ukraine.
van Renesse, R. L. (2005). Optical Document Security. (3rd ed.). London: Artech House.
Wang, H. C., & Yang, P. W. (2006, Nov.). Hologram based interactive video/audio system. Paper presented at the meeting of TENCON, Hong Kong. doi: 10.1109/TENCON.2006.343857
Wang, H. C., Liu, W. H., Chang, C. L., & Chen, Y. H. (2008, Dec.). Design of halftone-based AR markers under infrared detection. Paper presented at the meeting of Computer Science and Software Engineering, Wuhan, Hubei. doi: 10.1109/CSSE.2008.1391
Wang, H. C., Yang, P. W., & Fang, F. M. (2007, Nov.). Interactive music synthesis according to the diffractive light from a hologram. Paper presented at the meeting of ISPACS, Xiamen. doi: 10.1109/ISPACS.2007.4445814
Yamabe, T., & Nakajima, T. (2013). Playful training with augmented reality games- case studies towards reality-oriented system design. Multimedia Tools and Applications, 62(1), 259-286. doi: 10.1007/s11042-011-0979-7
Zhang, D., Russo, J. M., Gordon, M., Vorndran, S., & Koustuk, R. K. (2013). Ultralight-trapping filters with volume reflection holograms. IEEE Journal of Photovoltaics, 3(1), 284-288. doi: 10.1109/JPHOTOV.2012.2219500