簡易檢索 / 詳目顯示

研究生: 陳佩詒
Chen, Pei-Yi
論文名稱: 具有模擬式精熟學習策略之AR書研究
Studies of AR Books with Simulation Based Mastery Learning
指導教授: 張國恩
Chang, Kuo-En
口試委員: 張國恩
Chang, Kuo-En
宋曜廷
Sung, Yao-Ting
劉遠楨
Liu, Yuan-Chen
口試日期: 2022/10/31
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 模擬式學習精熟學習模擬式精熟學習光學
英文關鍵詞: Simulation based Mastery learning, AR Book, light
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300793
論文種類: 學術論文
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討整合模擬式精熟學習策略之AR Book,如何改善國小在「光」這一抽象概念上的教學缺失。多數教學者採用的教科書與實驗學習,各自有表徵單一、靜態,無法有效呈現學習內容,以及操弄作業之設備、安全風險。對此,研究者統合模擬、精熟策略與擴增實境的優點,並設計、發展一款學習輔助系統:SMAR Book,藉此三者特性來協助學習者複習光的基本概念。
    研究採用不等組之前後測準實驗方法,邀請新北市某國小64位學習者參與本次學習活動。實驗結果以ANCOVA、卡方檢定來檢視學習成效與錯誤次數改善與否,另以訪談了解學習者系統使用感受與學習體驗。
    研究結果得出:(一)使用SMAR Book複習之實驗組,其學習成效顯著優於使用講義複習之控制組、(二)使用SMAR Book複習之實驗組,其錯誤次數亦顯著低於使用講義複習之控制組、(三)無論實驗組或控制組皆表達對於使用SMAR Book進行學習之使用意願與正向態度。

    Most of the instructor usually use textbooks and conducting experiment when teaching the concept of “Light”. However, there are some restrictions that should be solved in instructional design, such as the monotonous and static representations of the textbooks, and the risks happened when conducting experiment. For these reasons, this study attempted to integrate the advantages of Simulation, Mastery Learning and Augmented Reality. Then, the researcher designed a learning assistant application (system) named SMAR book to help students reviewing the concept of light.
    This study used quasi-experimental design, and the researcher invited 64 students from one primary school in New Taipei City to participat the learning activity. The result of this study used ANCOVA and Chi-Square Test to check the learning outcomes and the error frequency, also researcher interviewed participants to understand which learning strategy do the students like more.
    The study result showed that : (a) the learning outcome of experiment group is significantly better than the control group. (b) the number of incorrect answer of experiment group is significantly less than the control group. (c) Both of two groups prefer to learn with SMAR Book.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究目的與假設 4 第三節 名詞釋義 5 第二章 文獻探討 7 第一節 國小光學教學之缺陷 7 第二節 模擬式學習 9 第三節 模擬式精熟學習 13 第四節 AR Book 17 第三章 系統工具 19 第一節 系統設計 19 第二節 系統架構 20 第三節 系統內容 22 第四章 研究方法 29 第一節 研究對象 29 第二節 研究教材 30 第三節 研究設計 30 第四節 研究工具 31 第五節 研究程序 33 第六節 資料處理與分析 36 第五章 研究結果 38 第一節 學習成效分析 38 第二節 不同概念上的錯誤次數分析 41 第三節 系統滿意度分析 47 第四節 訪談與回饋分析 52 第六章 討論與結論 55 第一節 討論 55 第二節 結論 59 第三節 建議與未來研究 60 參考文獻 62 附錄 71

    王晉基、郭重吉(1992)。利用選擇題的方式來探求國中學生對 “光” 的迷思概念之研究。科學教育,(3),73-92。
    王馨佾、崔夢萍(2014)。多媒體教材與觸控螢幕教學對國中智能障礙學生語文學習之影響。教育傳播與科技研究,(109),17-38。
    吳人傑、郭淑瑜(2018)。醫學模擬教育-實踐篇。新臺北護理期刊,20(1),1-9。
    宋建霆(2021)。運用擴增實境輔助建構概念圖之成效分析(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    呂文靜(2005)。國小各版本「自然與生活科技」教科書光的概念之內容分析(未出版之碩士論文)。臺中師範學院,臺中市。
    林合彥(2004)。具有教學支援的網路化模擬學習環境(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    林佳穎(2020)。動畫的使用方式如何影響高二學生的化學學習—以電化學單元為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    林昱成(2007)。遊戲式模擬軟體之設計與研究: 以小學自然科槓桿原理學習為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    林美玲(2017)。護理資訊作業模擬學習系統需求評估與設計(未出版之碩士論文)。國立台北護理健康大學,臺北市。
    林弘昌、陳祺祐(2011)。精熟學習策略融入電腦輔助教學應用於國小科學概念改變之研究。教學科技與媒體,(97),45-63。
    洪妤如(2006)。應用視覺化與操作之模擬軟體在電子學上的學習效果(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    胡慧蘭、張玉喆(2017)。模擬醫學教育的新趨勢。榮總護理,34(2),142-146。
    國家教育研究院(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-自然科學領域。取自https://www.naer.edu.tw/PageSyllabus?fid=52
    張文哲(2013)。教育心理學:理論與實際。台北市:學富文化。
    張國恩(2002)。從學習科技的發展看資訊融入教學的內涵。北縣教育,(41),16-25。
    張琇閔(2007)。電腦模擬學習環境對於二極體電路直覺學習成效之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    張漢宜(2007)。模擬在幼兒自然教材教法課程的應用。幼兒保育論壇,(2),200-215。
    張靜儀、李采褱(2004)。國小中,高年級學童光迷思概念與相關因素探究。屏東師院學報,(20),315-354。
    陳英娥(2000)。模擬。教育大辭書。取自http://terms.naer.edu.tw/detail/1313833/
    陳祖裕(2007)。醫學模擬訓練的新進展。醫學教育,11(4),261-265。
    陳聰文(2000)。表徵。教育大辭書。取自http://terms.naer.edu.tw/detail/1306983/
    黃萊儀(2012)。以POE策略探討國小六年級學生的光反射迷思概念與推理表現(未出版之碩士論文)。國立臺中教育大學,臺中市。
    潘霈榕(2007)。融入概念改變策略之視覺化學習系統對二極體迷思概念學習之影響(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    Abas, H., & Zaman, B. H. (2009). Augmented Reality: A Technology in Helping Reading Disabilities Student. In 1st International Conference on Educational Research and Practice ICERP.
    Ahya, S. N., Barsuk, J. H., Cohen, E. R., Tuazon, J., McGaghie, W. C., & Wayne, D. B. (2012). Clinical performance and skill retention after simulation‐based education for nephrology fellows. In Seminars in dialysis (Vol. 25, No. 4, pp. 470-473). Oxford, UK: Blackwell Publishing Ltd.
    Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and Practice in Science Education (pp. 191-208). Springer, Dordrecht.
    Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097.
    Ali, W. (2020). Online and remote learning in higher education institutes: A necessity in light of COVID-19 pandemic. Higher Education Studies, 10(3), 16-25.
    Andrea, R., Lailiyah, S., Agus, F., & Ramadiani, R. (2019). “Magic Boosed” an elementary school geometry textbook with marker-based augmented reality. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(3), 1242-1249.
    Auten, A. (1982). ERIC/RCS: Mastering Mastery Learning. Journal of Reading, 25(7), 698-701.
    Bajpai, M. (2013). Developing concepts in physics through virtual lab experiment: An effectiveness study. Techno Learn, 3(1), 43.
    Bakri, F., Marsal, O., & Muliyati, D. (2019). Textbooks equipped with augmented reality technology for physics topic in high-school. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 5(2), 113-122.
    Barsuk, J. H., Cohen, E. R., Vozenilek, J. A., O'Connor, L. M., McGaghie, W. C., & Wayne, D. B. (2012). Simulation-based education with mastery learning improves paracentesis skills. Journal of Graduate Medical Education, 4(1), 23-27.
    Barsuk, J. H., Cohen, E. R., Wayne, D. B., Siddall, V. J., & McGaghie, W. C. (2016). Developing a simulation-based mastery learning curriculum: lessons from 11 years of advanced cardiac life support. Simulation in Healthcare, 11(1), 52-59.
    Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The magicbook-moving seamlessly between reality and virtuality. IEEE Computer Graphics and Applications, 21(3), 6-8.
    Block, J. H., & Burns, R. B. (1976). Mastery learning. Review of Research in Education, 4, 3-49.
    Bloom, B. S. (1968). Learning for Mastery. Instruction and Curriculum. Regional Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1. Evaluation Comment, 1(2), n2.
    Brooks, M. (2009). Drawing, visualisation and young children’s exploration of “big ideas”. International Journal of Science Education, 31(3), 319-341.
    Chang, K. E., Chen, Y. L., Lin, H. Y., & Sung, Y. T. (2008). Effects of learning support in simulation-based physics learning. Computers & Education, 51(4), 1486-1498.
    Chen, Y. L., Hong, Y. R., Sung, Y. T., & Chang, K. E. (2011). Efficacy of simulation-based learning of electronics using visualization and manipulation. Journal of Educational Technology & Society, 14(2), 269-277.
    Chen, Y. L., Pan, P. R., Sung, Y. T., & Chang, K. E. (2013). Correcting misconceptions on electronics: Effects of a simulation-based learning environment backed by a conceptual change model. Journal of Educational Technology & Society, 16(2), 212-227.
    Chiu, J. L., DeJaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories on middle school students' understanding of gas properties. Computers & Education, 85, 59-73.
    Falloon, G. (2019). Using simulations to teach young students science concepts: An Experiential Learning theoretical analysis. Computers & Education, 135, 138-159.
    Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. The Psychology of Learning Science, 219-240.
    Gopalan, V., Zulkifli, A. N., Faisal, N. F., Mohamed, A. A., Mat, R. C., Bakar, J. A. A., & Saidin, A. Z. (2014). A Review of the Features of Augmented Reality Science Textbook. In Proceedings of 1st International Conference on Creative Media, Design & Technology (REKA2014). Penang:(Brochure).
    Griswold-Theodorson, S., Ponnuru, S., Dong, C., Szyld, D., Reed, T., & McGaghie, W. C. (2015). Beyond the simulation laboratory: a realist synthesis review of clinical outcomes of simulation-based mastery learning. Academic Medicine, 90(11), 1553-1560.
    Hussain, I., & Suleman, Q. (2016). Effect of Bloom’s mastery learning approach on students’ academic achievement in English at secondary level. Journal of Literature, Languages and Linguistics, 23, 35-43.
    Hung, Y. N. (2014). “What are you looking at?” An eye movement exploration in science text reading. International Journal of Science and Mathematics Education, 12(2), 241-260.
    Kühl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011). Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & Education, 56(1), 176–187.
    Lai, A. F., Chen, C. H., & Lee, G. Y. (2019). An augmented reality‐based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. British Journal of Educational Technology, 50(1), 232-247.
    Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65-83.
    Lindner, C., Rienow, A., & Jürgens, C. (2019). Augmented Reality applications as digital experiments for education–An example in the Earth-Moon System. Acta Astronautica, 161, 66-74.
    McGaghie, W. C., Issenberg, S. B., Barsuk, J. H., & Wayne, D. B. (2014). A critical review of simulation‐based mastery learning with translational outcomes. Medical Education, 48(4), 375-385.
    McGaghie, W. C., & Harris, I. B. (2018). Learning theory foundations of simulation-based mastery learning. Simulation in Healthcare, 13(3S), S15-S20.
    Mercier, K., Centeio, E., Garn, A., Erwin, H., Marttinen, R., & Foley, J. (2021). Physical education teachers’ experiences with remote instruction during the initial phase of the COVID-19 pandemic. Journal of Teaching in Physical Education, 40(2), 337-342.
    Mittal, S., Durak, U., & Ören, T. (Eds.). (2017). Guide to simulation-based disciplines: Advancing our computational future. Springer.
    Nunes, F. B., Zunguze, M. C., Herpich, F., Voss, G. B., Tarouco, L. M. R., & De Lima, J. V. (2018). Teaching Sciences in Virtual Worlds with Mastery Learning: A Case of Study in Elementary School. International Journal of Advanced Engineering Research and Science, 5(7).
    Oliveira, G., Grenha Teixeira, J., Torres, A., & Morais, C. (2021). An exploratory study on the emergency remote education experience of higher education students and teachers during the COVID‐19 pandemic. British Journal of Educational Technology, 52(4), 1357-1376.
    Park, M. (2019). Effects of simulation-based formative assessments on students’ conceptions in physics. EURASIA Journal of Mathematics, Science and Technology Education, 15(7), em1722.
    Pedaste, M., Mäeots, M., Leijen, Ä., & Sarapuu, S. (2012). Improving students’ inquiry skills through reflection and self-regulation scaffolds. Technology, Instruction, Cognition and Learning, 9(1-2), 81-95.
    Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., ... & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61.
    Pedaste, M., Mitt, G., & Jürivete, T. (2020). What is the effect of using mobile augmented reality in K12 inquiry-based learning?. Education Sciences, 10(4), 94.
    Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C., & LeMaster, R. (2006). PhET: Interactive simulations for teaching and learning physics. The Physics Teacher, 44(1), 18-23.
    Psycharis, S. (2016). Inquiry based-computational experiment, acquisition of threshold concepts and argumentation in science and mathematics education. Journal of Educational Technology & Society, 19(3), 282-293.
    Ray, S., & Srivastava, S. (2020). Virtualization of science education: a lesson from the COVID-19 pandemic. Journal of Proteins and Proteomics, 11(2), 77-80.
    Rohrer, M. W. (2000, December). Seeing is believing: the importance of visualization in manufacturing simulation. In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165) (Vol. 2, pp. 1211-1216). IEEE.
    Ryan, C. (2009). Current challenges in basic science education. Paris: United Nations Educational Scientific and Cultural Organisation.
    Sampson, V., Grooms, J., & Walker, J. (2009). Argument-driven inquiry: A way to promote learning during laboratory activities. The Science Teacher, 76(8), 42-47.
    Sung, Y. T., Chang, K. E., & Hou, H. T. (2005). Technology-instruction integration: Learning from America's experience and reflecting on Taiwan's development. Bull. Educ. Res., 51(1), 31-62.
    Talukder, M. M. R., Green, C., & Mamun-ur-Rashid, M. (2021). Primary science teaching in Bangladesh: A critical analysis of the role of the DPEd program to improve the quality of learning in science teaching. Heliyon, 7(2), e06050.
    Toquero, C. M. (2021). Emergency remote education experiment amid COVID-19 pandemic. IJERI: International Journal of Educational Research and Innovation, (15), 162-176.
    Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate?. International journal of human-computer studies, 57(4), 247-262.
    Udani, A. D., Macario, A., Nandagopal, K., Tanaka, M. A., & Tanaka, P. P. (2014). Simulation-based mastery learning with deliberate practice improves clinical performance in spinal anesthesia. Anesthesiology Research and Practice, 2014.
    Vallori, A. B. (2014). Meaningful learning in practice. Journal of Education and Human Development, 3(4), 199-209.
    van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199-212.
    Wayne, D. B., Butter, J., Siddall, V. J., Fudala, M. J., Linquist, L. A., Feinglass, J., ... & McGaghie, W. C. (2005). Simulation-based training of internal medicine residents in advanced cardiac life support protocols: a randomized trial. Teaching and learning in medicine, 17(3), 202-208.
    Yang, F. Y., Chang, C. C., Chen, L. L., & Chen, Y. C. (2016). Exploring learners’ beliefs about science reading and scientific epistemic beliefs, and their relations with science text understanding. International Journal of Science Education, 38(10), 1591-1606.
    Yilmaz, L. (2017). Simulation-Based Science. In Guide to Simulation-Based Disciplines (pp. 185-208). Springer, Cham.

    無法下載圖示 電子全文延後公開
    2028/06/01
    QR CODE