研究生: |
陳柏宇 Chen, Bo-Yu |
---|---|
論文名稱: |
Evolving a Knotted Kirchhoff Elastic Rod Evolving a Knotted Kirchhoff Elastic Rod |
指導教授: |
林俊吉
Lin, Chun-Chi |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | Geometric flows 、Fourth-order problem 、Kirchhoff elastic rods 、Gâteaux derivative of Möbius knot energy |
英文關鍵詞: | Geometric flows, Fourth-order problem, Kirchhoff elastic rods, Gâteaux derivative of Möbius knot energy |
DOI URL: | http://doi.org/10.6345/NTNU201900361 |
論文種類: | 學術論文 |
相關次數: | 點閱:87 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無中文摘要
In this thesis, we study the problem on how to find an equilibrium configuration of a knotted Kirchhoff
elastic rod by evolving it within the same knot class. The evolution is given by the $L^2$ gradient flow of
the total energy composed of the Kirchhoff elastic energy and the Möbius knot energy. We would prove
the long-time existence of smooth solutions for the gradient flow and discuss the asymptotic limit.
[DKS02] Gerhard Dziuk, Ernst Kuwert, and Reiner Schatzle. Evolution of elastic curves in Rn: Existence
and computation. Siam Journal on Mathematical Analysis - SIAM J MATH ANAL, 33, 04
2002.
[DP12] Anna Dall’Acqua and Paola Pozzi. A willmore-helfrich L2-flow of curves with natural boundary
conditions. Communications in Analysis and Geometry, 22, 11 2012.
[Fre94] He Z.X. Wang Z. Freedman, M.H. Möbius energy of knots and unknots. Ann. Math., (2) 139(1):
1–50, 1994.
[IS99] Thomas A. Ivey and David A. Singer. Knot types, homotopies and stability of closed elastic
rods. Proceedings of the London Mathematical Society, 79(2):429–450, 1999.
[LS96] Joel Langer and David A. Singer. Lagrangian aspects of the kirchhoff elastic rod. SIAM Rev.,
38(4):605–618, December 1996.
[LS09] Chun-Chi Lin and Hartmut R. Schwetlick. Evolving a kirchhoff elastic rod without selfintersections.
Journal of Mathematical Chemistry, 45(3):748–768, Mar 2009.
[LS10] Chun-Chi Lin and Hartmut R. Schwetlick. On a flow to untangle elastic knots. Calculus of
Variations and Partial Differential Equations, 39(3):621–647, 4 2010.
[OH03] J. O’ Hara. Energy of knots and conformal geometry, Series on Knots and Everything, volume 33
of Knots and Everything. World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
[Rud76] Walter Rudin. Principles of mathematical analysis / Walter Rudin. McGraw-Hill New York, 3d
ed. edition, 1976.
[SM03] Friedemann Schuricht and Heiko von der Mosel. Euler-lagrange equations for nonlinearly elastic
rods with self-contact. Archive for Rational Mechanics and Analysis, 168(1):35–82, Jun 2003.