簡易檢索 / 詳目顯示

研究生: 陳柏宇
Chen, Bo-Yu
論文名稱: Evolving a Knotted Kirchhoff Elastic Rod
Evolving a Knotted Kirchhoff Elastic Rod
指導教授: 林俊吉
Lin, Chun-Chi
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 51
中文關鍵詞: Geometric flowsFourth-order problemKirchhoff elastic rodsGâteaux derivative of Möbius knot energy
英文關鍵詞: Geometric flows, Fourth-order problem, Kirchhoff elastic rods, Gâteaux derivative of Möbius knot energy
DOI URL: http://doi.org/10.6345/NTNU201900361
論文種類: 學術論文
相關次數: 點閱:87下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    In this thesis, we study the problem on how to find an equilibrium configuration of a knotted Kirchhoff
    elastic rod by evolving it within the same knot class. The evolution is given by the $L^2$ gradient flow of
    the total energy composed of the Kirchhoff elastic energy and the Möbius knot energy. We would prove
    the long-time existence of smooth solutions for the gradient flow and discuss the asymptotic limit.

    0 Introduction . . . . . . . . . . . . . . . . . . . . . . 1 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . .2 1.1 Basic Notations for Curves and Frames . . . . . . . . .2 1.2 The Total Energy . . . . . . . . . . . . . . . . . . . 2 1.3 The $L^2$ Gradient Flow of the Total Energy . . . . . .4 1.4 Interpolation Inequalities for $\nabla^m_s\kappa$  and Their Polynomials . . . . . . . . . . . . . . . . .6 1.5 Interpolation Inequalities for $ artial^m_s\kappa$ . .8 1.6 Interpolation inequality of $\nabla^m_s(\tau\times\kappa)$ . . . . . . . . . . . . 11 2 Some Properties of the Gradient of the Möbius Energy . . 13 2.1 A Decomposition on $\mathcal{H_f}$ . . . . . . . . . . 13 2.2 The Estimate of the Main Term . . . . . . . . . . . . .14 2.3 The Estimate of the Remainders . . . . . . . . . . . . 18 2.3.1 The Estimate of $\nabla^m_s R_1$ . . . . . . . . . . 18 2.3.2 The Estimate of $\nabla^m_s R_2$ . . . . . . . . . . 28 2.4 The Estimate outside the Singularities . . . . . . . . 34 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 41 3 Long-time Existence of the Flow . . . . . . . . . . . . .41 3.1 Estimate for $\frac{\text{d}}{\text{d}t}\left(\frac{1}{2}\int_I\! |\nabla^m_s \kappa|^2\ \text{d}s\right)+\int_I\!|\nabla^{m+2}_s\kappa|^2\ \text{d}s$. . . . . . . . . . . . . . . . . . . . . . . . .42 3.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . 48 References. . . . . . . . . . . . . . . . . . . . . . . . 51

    [DKS02] Gerhard Dziuk, Ernst Kuwert, and Reiner Schatzle. Evolution of elastic curves in Rn: Existence
    and computation. Siam Journal on Mathematical Analysis - SIAM J MATH ANAL, 33, 04
    2002.
    [DP12] Anna Dall’Acqua and Paola Pozzi. A willmore-helfrich L2-flow of curves with natural boundary
    conditions. Communications in Analysis and Geometry, 22, 11 2012.
    [Fre94] He Z.X. Wang Z. Freedman, M.H. Möbius energy of knots and unknots. Ann. Math., (2) 139(1):
    1–50, 1994.
    [IS99] Thomas A. Ivey and David A. Singer. Knot types, homotopies and stability of closed elastic
    rods. Proceedings of the London Mathematical Society, 79(2):429–450, 1999.
    [LS96] Joel Langer and David A. Singer. Lagrangian aspects of the kirchhoff elastic rod. SIAM Rev.,
    38(4):605–618, December 1996.
    [LS09] Chun-Chi Lin and Hartmut R. Schwetlick. Evolving a kirchhoff elastic rod without selfintersections.
    Journal of Mathematical Chemistry, 45(3):748–768, Mar 2009.
    [LS10] Chun-Chi Lin and Hartmut R. Schwetlick. On a flow to untangle elastic knots. Calculus of
    Variations and Partial Differential Equations, 39(3):621–647, 4 2010.
    [OH03] J. O’ Hara. Energy of knots and conformal geometry, Series on Knots and Everything, volume 33
    of Knots and Everything. World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
    [Rud76] Walter Rudin. Principles of mathematical analysis / Walter Rudin. McGraw-Hill New York, 3d
    ed. edition, 1976.
    [SM03] Friedemann Schuricht and Heiko von der Mosel. Euler-lagrange equations for nonlinearly elastic
    rods with self-contact. Archive for Rational Mechanics and Analysis, 168(1):35–82, Jun 2003.

    下載圖示
    QR CODE