研究生: |
楊琇甯 Yang, Xiu-Ning |
---|---|
論文名稱: |
探討縱向彎曲勁度對不同運動型態的生物力學影響 The biomechanical effects of longitudinal bending stiffness on different movement patterns |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
口試委員: |
施政宇
Shi, Zheng-Yu 許維君 Hsu, Wei-Chun 相子元 Shiang, Tzyy-Yuang |
口試日期: | 2022/07/04 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 足底壓力 、中底 、跳躍 、步態 、地面反作用力 |
英文關鍵詞: | plantar pressure, midsole, jumping, gait, ground reaction force |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301785 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前言:近年來運動鞋的開發與研究有跳躍式的成長,如何在運動鞋中加入創新的 設計,又能提升運動表現與感受,成為各大鞋廠追逐的目標,其中一種備受矚目的設 計特徵,是在鞋內中底加入碳纖維板來提升縱向彎曲勁度,而這種設計對運動表現和 傷害預防起著重要的作用,但是過去研究發現勁度的高低會影響個體的表現效益,且 尚不清楚造成鞋子性能改變的具體原因和潛在機制。目的:探討不同勁度的全長式碳 纖維板,在不同運動型態(走路、跑步、跳躍)與速度下的生物力學影響。方法:招 募 15 名健康成年男性受試者,隨機穿著四種條件的運動鞋(無板、0.6mm、0.8mm、 1.0mm),並進行不同運動型態與速度的動作,再擷取受試者行進過程中的地面反作 用力 (Ground reaction forces, GRF)和足底壓力中心 (Center of pressure, COP)數值進行分析, 最後以重複量數二因子變異數與單因子變異數分析比較各條件之間的差異。結果:在 鞋底放置不同勁度的碳纖維板,會影響步行模式下的 COP 移動速度峰值,且隨著勁度 越高,順暢性越好,但隨著勁度的增加,水平力量峰值及推進衝量則越小,在跑步及 跳躍模式下,則沒有顯著的影響,勁度的高低也不會影響受試者的喜好選擇。結論: 不同的縱向彎曲勁度,可能會對一般人步行的運動學及動力學造成影響,且隨著勁度 增加推進階段的順暢性越好,但過高的勁度可能會導致水平力量峰值及推進衝量的降 低。因此建議根據運行模式與運動強度挑選合適的勁度,而在跑步及跳躍模式下,可 能皆無法藉由市面上的常見勁度獲得明顯效益。
In recent years, there has been a jump in the development and research of sports shoes, and how to add innovative technology to sports shoes to enhance sports performance and feeling has become the target of major shoe manufacturers. One of the high-profile design features is the addition of carbon fiber panels to the midsole of the shoe to increase the longitudinal bending stiffness. This design plays an important role in sports performance and injury prevention. However, past studies have found that the level of stiffness will affect the individual’s performance benefits, and the specific reasons and underlying mechanisms for the change in shoe performance are not yet clear. Objective: To investigate the biomechanical effects of different thicknesses of full-length carbon fiber plates on different exercise patterns (walking, running, jumping) and speed. Methods: Fifteen healthy adult male subjects were recruited and randomly wore four conditions of sports shoes (no plate, low stiffness, medium stiffness, and high stiffness) and carry out different movement patterns and speed movements The values of GRF and COP were collected during the subjects’ performance, and the differences between the conditions were compared by repeated measures of repeated measurement two-way ANOV A and one-way ANOV A. Results: Placement of carbon fiber plates of different vigor in the shoes will affect the peak COP velocity in walking, and with higher stiffness, the smoothness will be better, but with increasing stiffness, the peak horizontal force and the propulsive impulse will be smaller, in running and jumping , there is no significant effect, and the level of stiffness will not affect the participant 's preference. Conclusion: Different longitudinal bending stiffness may affect the kinematics and kinetics of walking in general, and the smoother the toe-off phase as the stiffness increases, but too high a stiffness may lead to a decrease in peak horizontal force and propulsive impulse. Therefore, it is recommended to select the appropriate level of stiffness according to the mode of operation and exercise intensity, while in running and jumping, it may not be possible to obtain significant benefits with the common stiffnesses available on the market.
Barnes, K. R., & Kilding, A. E. (2019). A randomized crossover study investigating the running economy of highly-trained male and female distance runners in marathon racing shoes versus track spikes. Sports Medicine, 49(2), 331-342.
Beck, O. N., Golyski, P. R., & Sawicki, G. S. (2020). Adding carbon fiber to shoe soles may not improve running economy: a muscle-level explanation. Scientific Reports, 10(1), 1-13.
Biewener, A. A., Farley, C. T., Roberts, T. J., & Temaner, M. (2004). Muscle mechanical advantage of human walking and running: Implications for energy cost. Journal of Applied Physiology, 97, 2266–2274.
Bräuer, S., Kiesewetter, P., Milani, T. L., & Mitschke, C. (2021). The 'ride' feeling during running under field conditions-objectified with a single inertial measurement unit. Sensors (Basel, Switzerland), 21(15), 5010. https://doi.org/10.3390/s21155010
Crandall, J., Frederick, E. C., Kent, R., Lessley, D. J., & Sherwood, C. (2015). Forefoot bending stiffness of cleated American football shoes. Footwear Science, 7, 139–148.
Cigoja, S., Firminger, C. R., Asmussen, M. J., Fletcher, J. R., Edwards, W. B., & Nigg, B. M. (2019). Does increased midsole bending stiffness of sport shoes redistribute lower limb joint work during running?. Journal of Science and Medicine in Sport, 22(11), 1272-1277.
Cigoja, S., Fletcher, J. R., Esposito, M., Stefanyshyn, D. J., & Nigg, B. M. (2021). Increasing the midsole bending stiffness of shoes alters gastrocnemius medialis muscle function during running. Scientific Reports, 11(1), 1–11.
Chapman, R. F., Laymon, A. S., Wilhite, D. P., McKenzie, J. M., Tanner, D. A., & Stager, J. M. (2012). Ground contact time as an indicator of metabolic cost in elite distance runners. Medicine and Acience in Aports and Exercise, 44(5), 917–925.
Day, E., & Hahn, M. (2020). Optimal footwear longitudinal bending stiffness to improve running economy is speed dependent. Footwear Science, 12(1), 3-13.
Frederick, E. C., Daniels, J. R., & Hayes, J. W. (1984). The effect of shoe weight on the aerobic demands of running. na.
Franz, J. R., Wierzbinski, C. M., & Kram, R. (2012). Metabolic cost of running barefoot versus shod: is lighter better. Med Sci Sports Exerc, 44(8), 1519-1525.
Flores, N., Delattre, N., Berton, E., & Rao, G. (2017). Effects of shoe energy return and bending stiffness on running economy and kinetics. Footwear Science, 9, S11–S13.
Flores, N., Rao, G., Berton, E., & Delattre, N. (2019). The stiff plate location into the shoe influences the running biomechanics. SportsBbiomechanics.
Farina, E. M., Haigh, D., & Luo, G. (2019). Creating footwear for performance running. Footwear Science, 11(Supp 1), S134–S135. doi:10.1080/19424280.2019.1606119
Flores, N., Delattre, N., Berton, E., & Rao, G. (2019). Does an increase in energy return and/or longitudinal bending stiffness shoe features reduce the energetic cost of running?. European Journal of Applied Physiology, 119(2), 429-439.
Gordon, D., Wightman, S., Basevitch, I., Johnstone, J., Espejo-Sanchez, C., Beckford, C., Boal, M., Scruton, A., Ferrandino, M., & Merzbach, V. (2017). Physiological and training characteristics of recreational marathon runners. Open Access Journal of Sports Medicine, 8, 231–241.
García-Pinillos, F., García-Ramos, A., Ramírez-Campillo, R., Latorre-Román, P. Á., & Roche-Seruendo, L. E. (2019). How do spatiotemporal parameters and lower-body stiffness change with increased running velocity? A comparison between novice and elite level runners. Journal of Human Kinetics, 70, 25–38.
Hunter, I., McLeod, A., Valentine, D., Low, T., Ward, J., & Hager, R. (2019). Running economy, mechanics, and marathon racing shoes. Journal of Sports Sciences, 37(20), 2367-2373.
Hoogkamer, W., Kipp, S., Frank, J. H., Farina, E. M., Luo, G., & Kram, R. (2018). A comparison of the energetic cost of running in marathon racing shoes. Sports Medicine, 48(4), 1009-1019.
Hoogkamer, W., Kram, R., & Arellano, C. J. (2017). How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Medicine (Auckland, N.Z.), 47(9), 1739–1750.
Hunter, I., McLeod, A., Valentine, D., Low, T., Ward, J., & Hager, R. (2019). Running economy, mechanics, and marathon racing shoes. Journal of Sports Sciences, 37(20), 2367-2373.
Hoogkamer, W., Kipp, S., & Kram, R. (2019). The biomechanics of competitive male runners in three marathon racing shoes: a randomized crossover study. Sports Medicine, 49(1), 133-143.
Hébert-Losier, K., Finlayson, S. J., Driller, M. W., Dubois, B., Esculier, J. F., & Beaven, C. M. (2021). Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. Journal of Sport and Health Science, 11(3), 275–284.
Jin, L. (2022). The influence of different footwear insole stiffness on center of pressure and ankle kinematics during walking: a case report. Biomechanics, 2(2), 205-212.
Lam, C.K.-Y.; Mohr, M.; Nigg, S.; Nigg, B. Definition and quantification of ‘ride’ during running. Footwear Sci. 2018, 10, 77–82
Moore, I. S., Jones, A., & Dixon, S. (2014). The pursuit of improved running performance: can changes in cushioning and somatosensory feedback influence running economy and injury risk?. Footwear Science, 6(1), 1-11.
Morio, C., & Flores, N. (2017). Effect of shoe bending stiffness on lower limb kinetics of female recreational runners. Computer Methods in Biomechanics and Biomedical Engineering, 20, 139–140.
Madden, R., Sakaguchi, M., Tomaras, E.K., Wannop, J.W.,& Stefanyshyn, D. (2016). Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Science, 8, 91–98.
McLeod, A. R., Bruening, D., Johnson, A. W., Ward, J., & Hunter, I. (2020). Improving running economy through altered shoe bending stiffness across speeds. Footwear Science, 12(2), 79-89.
McCrory, J. L., Chambers, A. J., Daftary, A., & Redfern, M. S. (2014). Ground reaction forces during stair locomotion in pregnant fallers and non-fallers. Clinical Biomechanics (Bristol, Avon), 29(2), 143–148.
Moir, G. L. (2008). Three different methods of calculating vertical jump height from force platform data in men and women. Measurement in Physical Education and Exercise Science, 12(4), 207-218.
Mally, F., Hofstätter, O., & Eckelt, M. (2020). Influence of running shoes and running velocity on “ride” during running. In multidisciplinary digital publishing institute proceedings (Vol. 49, No. 1, p. 54).
Nigg, B. M., Cigoja, S., & Nigg, S. R. (2021). Teeter-totter effect: a new mechanism to understand shoe-related improvements in long-distance running. British Journal of Sports Medicine, 55(9), 462–463.
Oh, K., & Park, S. (2017). The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. Journal of Biomechanics, 53, 127–135.
Ortega, J. A., Healey, L. A., Swinnen, W., & Hoogkamer, W. (2021). Energetics and biomechanics of running footwear with increased longitudinal bending stiffness: A narrative review. Sports Medicine, 51(5), 873–894. doi:10.1007/s40279-020-01406-5
Piana, E., Petrogalli, C., Paderno, D., & Carlsson, U. (2018). Application of the wave propagation approach to sandwich structures: Vibro-acoustic properties of aluminum honeycomb materials. Applied Sciences, 8, 45.
Roy, J. P. R., & Stefanyshyn, D. J. (2006). Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Medicine & Science in Sports & Exercise, 38(3), 562-569.
Rothschild, C. E. (2012). Primitive running: a survey analysis of runners' interest, participation, and implementation. The Journal of Strength & Conditioning Research, 26(8), 2021-2026.
Reints, R., Hijmans, J. M., Burgerhof, J., Postema, K., & Verkerke, G. J. (2017). Effects of flexible and rigid rocker profiles on in-shoe pressure. Gait & posture, 58, 287–293.
Stefanyshyn, D., & Fusco, C. (2004). Athletics: Increased shoe bending stiffness increases sprint performance. Sports Biomechanics, 3(1), 55-66.
Stefanyshyn, D. J., & Nigg, B. M. (2000b). Influence of midsole bending stiffness on joint energy and jump height performance. Medicine and Science in Sports and Exercise, 32, 471–476.
Sun, X., Lam, W. K., Zhang, X., Wang, J., & Fu, W. (2020). Systematic review of the role of footwear constructions in running biomechanics: implications for running-related injury and performance. Journal of Sports Science & Medicine, 19(1), 20.
Tinoco, N., Bourgit, D., & Morin, J.-B. (2010). Influence of midsole metatarsophalangeal stiffness on jumping and cutting movement abilities. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 224, 209–217.
Taylor, J. B., Nguyen, A. D., Parry, H. A., Zuk, E. F., Stewart Pritchard, N., & Ford, K. R. (2019). Modifying midsole stiffness of basketball footwear affects foot and ankle biomechanics. International Journal of Sports Physical Therapy, 14(3), 359–367.
van Kouwenhove, L., Verkerke, G. J., Postema, K., Dekker, R., & Hijmans, J. M. (2021). Effects of Longitudinal Bending Stiffness of forefoot rocker profile shoes on ankle kinematics and kinetics. Gait & posture, 90, 326–333.
Willwacher, S., König, M., Potthast, W., & Brüggemann, G. P. (2013). Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running?. Journal of Applied Biomechanics, 29(5), 583-592.
Willwacher, S., König, M., Braunstein, B., Goldmann, J.-P.,& Brüggemann, G.P. (2014). The gearing function of running shoe longitudinal bending stiffness. Gait & Posture, 40, 386–390.
Worobets, J., Wannop, J. W., Tomaras, E., & Stefanyshyn, D. (2014). Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Science, 6(3), 147-153.
Willwacher, S., Kurz, M., Menne, C., Schrödter, E., & Brüggemann, G. P. (2016). Biomechanical response to altered footwear longitudinal bending stiffness in the early acceleration phase of sprinting. Footwear Science, 8(2), 99-108.
Zwaferink, J., Custers, W., Paardekooper, I., Berendsen, H. A., & Bus, S. A. (2021). Effect of a carbon reinforcement for maximizing shoe outsole bending stiffness on plantar pressure and walking comfort in people with diabetes at high risk of foot ulceration. Gait & Posture, 86, 341–345.
Zhu, Z., Fu, W., Shao, E., Li, L., Song, L., Wang, W., & Liu, Y. (2020). Acute Effects of Midsole Bending Stiffness on Lower Extremity Biomechanics during Layup Jumps. Applied Sciences, 10(1), 397.