簡易檢索 / 詳目顯示

研究生: 楊有為
Yu-Wei Yang
論文名稱: 應用振幅調變和相位調變八字形光纖鎖模雷射於高速脈衝信號傳輸之研究
Study of High Speed Pulse Transmission with Applying Amplitude Modulated and Phase Modulated Figure Eight Mode-Locked Fiber Laser
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
中文關鍵詞: 光纖通訊色散補償高速雷射鎖模雷射振幅調變相位調變光纖雷射
英文關鍵詞: optical fiber communication, dispersion compensated, high speed laser, mode-locked laser, amplitude modulator, phase modulator, fiber laser
論文種類: 學術論文
相關次數: 點閱:307下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分別提出高速振幅調變和調幅信號注入式相位調變及調頻注入式相位調變等三型鎖模雷射應用於光纖通訊傳輸系統之研究,於高速雷射光源之共振腔部份,是分別利用一個振幅調變器和一個相位調變器,注入外加調變訊號,使共振腔內之縱模產生建設性干涉,進而達到以低頻外加調變訊號,倍增其光訊號之重複率的諧波鎖模雷射。此外,我們微調外加調變訊號,以分析外加調變訊號對脈衝寬度、脈衝重複率、脈衝抖動、週期、上升時間和下降時間等因數的影響。於傳輸系統方面,我們應用於光纖通訊系統之整合。在光纖長距離傳輸部分,我們以長距離單模光纖搭配色散補償光纖,使色散得以補償,並以摻鉺光纖放大器補償長距離傳輸的損失,於此系統,我們改變模擬與理論參數,以眼圖來評估我們所設計不同的系統適合應用的條件。

    In this thesis, we propose a fiber-satellite integration using a high speed AM fed amplitude-modulated mode-locked and AM/PM fed phase-modulated mode-locked figure-eight laser apply to transmission system. In the cavity of high speed laser source, we utilize an amplitude modulator and phase modulator to inject additive modulation signal respectively. The modulation signal can let the longitudinal mode in cavity produce constructive interference, and then, achieve small modulation signal to excite harmonic and rational mode-locked laser in high repetition rate. After producing high speed mode-locked laser, we do detuning the modulation parameters to analyze the effect of repetition rate, pulsewidth, rise time, falling time and jitter. In optical transmission systems, we consider the 100 km long single mode fiber is used in the fiber transmission analysis. We also insert the dispersion-compensated fiber to compensate chromatic dispersion, and analyse eye pattern with various transmission system, we can evaluate proper application for our designed system.

    Contents Chinese Abstract………………………………………………...i English Abstract………………………………………………..ii Acknowledgment……………………………………………….iv Contents………………………………………………………....v List of Figures…………………………………………………viii List of Tables………………………………………………….xvii Chapter 1 Introduction…………………………………………1 Chapter 2 Amplitude Modulated Mode-Locked Figure Eight Fiber Laser…………...……………………………...7 2-1 Introduction…………..…..………………………………………..…...7 2-2 System Description …………………………….....………………….15 2-3 Theoretical Model………………………………………..…..……….17 2-3-1 Time-Domain ABCD Matrix……………………...…………..17 2-3-2 Theoretical Model of A Amplitude-Modulated Mode-Locked F8L…………………………………...……………………...19 2-4 Analysis of Results...……………………………………………..…...22 2-4-1 10 Gb/s Pulse Train Generation……………………………...…23 2-4-2 20 Gb/s Pulse Train Generation………………………………...24 2-4-3 40 Gb/s Pulse Train Generation…………………………….…..24 2-4-4 50 Gb/s Pulse Train Generation…………………………….…25 2-5 Summary…………………………………………………………...…26 Chapter 3 Phase Modulated Mode-Locked Figure Eight Fiber Laser……………………………………………….51 3-1Introduction…………..…..………………………………………..…..51 3-2 System Description …………………………….....………………….54 3-3 Theoretical Model………………………………………..…..……….55 3-3-1 FM signal fed PM……………………...……………………...56 3-3-2AM signal fed PM……………………...……………………...57 3-4 Analysis of Results...……………………………………………..…...59 3-4-1 10 Gb/s Pulse Train Generation……………………………...…60 3-4-2 20 Gb/s Pulse Train Generation………………………………...61 3-4-3 40 Gb/s Pulse Train Generation…………………………….…..62 3-4-4 50 Gb/s Pulse Train Generation…………………………….…..62 3-5 Summary…………………………………………………………...…63 Chapter 4 Transmission of Mode-Locked Laser with dispersion compensated fiber.…………………….83 4-1 Introduction ………………………...…………………..……..……...83 4-2 Single Channel Fiber Transmission System…………………..............85 4-2-1 Unreaptered Transmission System…………...……………….85 4-2-2 Dispersion Mapping System…………………………………..86 4-3 Theoretical Analysis of The System…...………………….………….86 4-3-1 Power Penalty Induced by Dispersion……………………..….86 4-4 Simulate model of The System……………………………………….89 4-4-1 Bit Error Rate…………………...…………………………..…..90 4-5 Numerical Results …………………………………………………....94 4-6 Distance Analysis…………………………………………………...97 4-6 Summary and Discussion……………………………………………..99 Chapter 5 Conclusions……...……………………..…………113 References………………………………………………..…...118 Publication Lists…………………………………………….……xviii

    [1] I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett., vol. 27, pp. 544-545, 1991.
    [2] R. Ludwig, U. Feiste, S. Diez, C. Schubert, C. Schmidt, H. J. Ehrke and H. G. Weber, “Unrepeatered 160Gbit/s RZ single-channel transmission over 160km of standard fibre at 1.55μm with hybrid MZI optical demultiplexer,” Electron. Lett., vol. 36, pp. 1405-1406, 2000.
    [3] S. B. Poole, D. N. Payne and M. E. Fermann, “Fabrication of low loss optical fibres containing rare-earth ions,” Electron. Lett., vol. 21, pp. 737-738, 1985.
    [4] D. C. Hanna, A. Kazer, M. W. Phillips, D. P. Shepherd and P. J. Suni, “Active mode-locking of a Yb:Er fiber laser,” Electron. Lett., vol. 25, pp. 95-96, 1989.
    [5] S. Kawanishi, H. Takara, K. Uchiyama, M. Saruwatari and T. Kitoh, “100 Gbit/s, 100 km optical transmission with in-line amplification utilizing all-optical multi/demultiplexing and improved PLL timing extraction,” in Proc. 19th Euro. Conf. Opt. Commun. (ECOC’93), vol. 2, Montreux, Switzerland, 1993, p. 13.
    [6] J. Kaniyil, J. Takei, Y. O. Tomonori, Usui, I. Oka and T. Kawabata, “A global message network employing low earth orbiting satellites,” IEEE J. Select. Areas Communication, vol. 10, pp. 418-427, 1992.
    [7] F. Vatalaro, G. E. Croazza, C. Caini and C. Ferrarelli, “Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading,” IEEE J. Select. Areas Communication, vol. 13, pp. 291-300, 1995.
    [8] V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol., vol. 21, pp. 2811-2827, 2003.
    [9] O. Nilsson, “Fundamental limits and possibilities for future telecommunications,” IEEE Comm. Magazine, pp. 164-167, 2001.
    [10] K. Grs and R. Mller, “Breitband-modulation durch Steuerung der emission eines optischen masers (Auskopple-modulation),” Phys. Lett., vol. 5, pp. 179–181, 1963.
    [11] K. Grs, “Beats and modulation in optical ruby lasers,” in Quantum Electronics III, P. Grivet and N. Bloembergen, Eds. New York: Columbia Univ. Press, 1964, pp. 1113–1119.
    [12] M. DiDomenico, “Small-signal analysis of internal (coupling type) modulation of lasers,” J. Appl. Phys., vol. 35, pp. 2870–2876, 1964.
    [13] L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He–Ne laser modes induced by synchronous intractivity modulation,” Appl. Phys. Lett., vol. 5, pp. 4–6, 1964.
    [14] A. Yariv, “Internal modulation in multimode laser oscillators,” J. Appl. Phys., vol. 36, pp. 388–391, 1965.
    [15] H.W. Mocker and R. J. Collins, “Mode competition and self-locking effects in a Q-switched ruby laser,” Appl. Phys. Lett., vol. 7, pp. 270–272, 1965.
    [16] E. P. Ippen, C. V. Shank and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett., vol. 21, pp. 348–350, 1972.
    [17] C. V. Shank and E. P. Ippen, “Sub-picosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett., vol. 24, pp. 373–375, 1974.
    [18] J. G. Fujimoto, A. M. Weiner and E. P. Ippen, “Generation and measurement of optical pulses as short as 16 fs,” Appl. Phys. Lett., vol. 44, pp. 832–834, 1984.
    [19] R. L. Fork, B. I. Greene and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking,” Appl. Phys. Lett., vol. 38, pp. 617–619, 1981.
    [20] W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett., vol. 46, pp. 1120–1122, 1985.
    [21] R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett., vol. 12, pp. 483–485, 1987.
    [22] D. I. Kuizenga and A. E. Siegman, “Modulator frequency detuning effects in the FM mode-locked laser,” IEEE J. Quantum Electron., vol. QE-6, pp. 803–808, 1970.
    [23] L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett., vol. 9, pp. 13–15, 1984.
    [24] J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus and E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett., vol. 14, pp. 48–50, 1989.
    [25] E. P. Ippen, H. A. Haus and L. Y. Liu, “Additive pulse modelocking,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 6, pp. 1736–1745, 1989.
    [26] D. K. Negus, L. Spinelli, N. Goldblatt and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens mode-locking in Ti :Al2O3 ,” OSA Proc. Advanced Solid-State Lasers, vol. 10, pp. 120–124, 1991.
    [27] F. Salin, J. Squier and M. Piche, “Mode locking of Ti :Al2O3 lasers and self-focusing : A Gaussian approximation,” Opt. Lett., vol. 16, pp. 1674–1676, 1991.
    [28] T. Brabec, C. Spielmann, P. F. Curley and F. Krausz, “Kerr lens modelocking,” Opt. Lett., vol. 17, pp. 1292–1294, 1992.
    [29] M. Piche and F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett., vol. 18, pp. 1041–1042, 1993.
    [30] F. Salin, J. Squier, G. Mourou, M. Piche and N. McCarthy, “Modelocking of Ti :Al2O3 lasers using self-focusing,” OSA Proc. Advanced Solid-State Lasers, vol. 10, pp. 125–129, 1991.
    [31] M. Piche, “Beam reshaping and self-mode-locking in nonlinear laser resonators,” Opt. Commun., vol. 86, pp. 156–160, 1991.
    [32] U. Keller, W. H. Knox and G. W. tHooft, “Ultrafast solid-state modelocked lasers using resonant nonlinearities,” IEEE J. Quantum Electron., vol. 28, pp. 2123–2133, 1992.
    [33] J. H. B. Nijhof, N. J. Doran, W. Forysiak and F. M. Knox, “Stable soliton-like propagation indispersion-managed system with net anomalous, zero, and normal dispersion,” Electron. Lett., vol. 33, pp. 1726–1727, 1997.
    [34] K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett., vol. 18, pp. 1080–1082, 1993.
    [35] D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser-part I: theory,” IEEE J. Quantum Electron., vol. QE-6, pp. 694-708, 1970.
    [36] J. Wilson and J. Hawks, “Laser: principle and applications,” (Prentice Hall, New York, 1987) 2nd Edn., Chap. 3.
    [37] Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fibre ring lasers,” Electron. Lett., vol. 32, pp. 55-57, 1996.
    [38] M. Nakazawa, E. Yoshida and Y. Kimura, “Ultrastable harmonically and regeneratively mode-locked polarization-maintaining erbium fibre ring laser,” Electron. Lett., vol. 30, pp. 1603-1605, 1994.
    [39] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim and F. H. Lee, “ External fibre laser based pulse amplitude equalisation scheme for rational harmonic mode-locking in a ring-type fibre laser,” Electron. Lertt. vol. 34, pp. 182-184, 1998.
    [40] R. Kiyan, O. Deparis, O. Pottiez, P. Megret and M. Blondel, “Long term stable operation of a rational harmonic actively mode locked Er doped fibre laser with repetition rate doubling,” Proc.Of European Conf. On Optical Communication, ECOC’93, September 1999, Nice, France, pp. 180-181.
    [41] H. Takara, S. Kawanishi and M. Saruwatari, “Stabilisation of a mode-locked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett, vol. 31, pp. 292-293, 1995.
    [42] G. E. Town, L. Chen and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett., vol. 12, pp. 1459-1461, 2000.
    [43] S.Yamashita and K. Hsu, “Active modelocking of miniature fibre Fabry-Perot laser in ring cavity,” IEE Electron. Lett., vol. 37, pp. 1115-1116, 2001/
    [44] W. W. Tang and C. Shu, “Optical generation of amplitude-equalized pulses from a rational harmonic mode-locked fiber laser incorporating an SOA loop modulator,” IEEE Photon. Technol. Lett., vol. 15, pp. 21-23, 2003.
    [45] N. H. Seong and Dug Y. Kim, “A new figure-eight fiber laser based on a dispersion-imbalanced nonlinear optical loop mirror with lumped dispersive elements,” IEEE Photon. Technol. Lett., vol. 14, pp. 459-461, Apr. 2002
    [46] M. Nakazawa, E. Yoshida and Y. Kimura, “Generation of 98fs optical pulse directly from an erbium-doped fibre ring laser at 1.57 μm,” Electron Lett., vol. 29, pp. 63-65, 1993.
    [47] A. J. Stentz and R. W. Boyd, “Figure-eight fibre laser with largely unbalanced central coupler,” IEE Electron Lett., vol.30, pp. 1302-1303, 1994.
    [48] S. Li, C. Lou and K. T. Chan, “Rational harmonic active and passive modelocking in a figure-of-eight fibre laser,” Electron Lett., vol. 34, pp. 375-376, 1998.
    [49] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, D. II Chang, K. H. Kim and S. B. Kang, “Wideband wavelength tunable modelocked fibre laser over 1557-1607 nm,” Electron Lett., vol. 36, pp. 300-302, 2000.
    [50] L. Duan, M. Dagenais and Julius Goldhar, “Smoothly wavelength-tunable picosecond pulse generation using a harmonically mode-locked fiber ring laser,” J. Lightwave Technol., vol. 21, pp. 930-937, 2003.
    [51] K. Vlachos, C. Bintjas, N. Pleros and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser source,” IEEE J. Selected Topics in Quantum Electron., vol. 10, pp. 147-154, 2004.
    [52] L. W. Liou, M. Yu, T. Yoshino and G. P. Agrawal, “Mutual injection locking of a fibre laser and a DFB semiconductor laser,” Electron. Lett., vol.31, pp. 41-42, 1995.
    [53] M. E. Fermann, F. Haberl, M. Hofer and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett., vol. 15, pp. 752–754, 1990.
    [54] S. Li, C. Lou and K. T. Chan, “Rational harmonic active and passive modelocking in a figure-of- eight fibre laser,” Electron. Lett., vol. 34, pp. 375–376, 1998.
    [55] N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett., vol. 13, pp. 56–58, 1988.
    [56] S. Wu, J. Strait, R. L. Fork, and T. F. Morse, “High-power passively mode-locked Er-doped fiber laser with a nonlinear optical loop mirror,” Opt. Lett., vol. 18, pp. 1444–1446, 1993.
    [57] H. Y. Rhy, B. Y. Kim and H. W. Lee, “Noiselike pulse generation in a fiber laser by use of nonlinear differential filtering with a nonlinear birefringent loop mirror,” in Proc. CLEO, Pacific Rim, 1999, pp. 1135–1136.
    [58] G. Town, J. Chow and M. Romagnoli, “Sliding-frequency figure-eight optical fibre laser,” Electron. Lett., vol. 31, pp. 1452-1453, 1995.
    [59] H. A. Haus, E. P. lppen and K. Tamura, “Additive –pulse modelocking in fiber lasers,” IEEE J. Select. Topics Quantum Electron., vol. 30, pp. 200-208, 1994.
    [60] A. B. Grudinin, D. J. Richardson and D. N. Paync, “Energy quantisation in figure eight fibre laser,” Electron. Lett., vol. 28, pp. 67–68, 1992.
    [61] D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett., vol. 27, pp. 730-732, 1991.
    [62] M. L. Dennis and I. N. Duling III, “High repetition rate figure eight laser with extracavity feedback,” Electron. Lett., vol. 28, pp. 1894–1896, 1992.
    [63] A. J. Stentz and R. W. Boyd, “Figure-eight fibre laser with largely unbalanced central coupler,” Electron. Lett., vol. 30, pp. 1302-1303, 1994.
    [64] I. N. Duling III, “Mode locked figure eight lasers”, Lasers and Electro-Optics Society Annual Meeting, IEEE Conference Proceedings LEOS '93. 1993, pp. 270-271, 1993.
    [65] M. Shirane, Y. Hashimoto, H. Yamada and H. Yokoyama, “A compact optical sampling measurement system using mode-locked laser diode modules,” IEEE Photon. Technol. Lett., vol. 12, pp. 1537-1539, 2000.
    [66] H. Ohta, S. Nogiwa, Y. Kawaguchi, and Y. Endo, “Measurement of 200 Gbit/s optical eye diagram by optical sampling with gain-switched optical pulse,” Electron. Lett., vol. 36, pp. 737–739, 2000.
    [67] Amarildo J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1882-1887, 2001.
    [68] F. Pittoni, M. Gioannini and I. Montrosset, “Time-domain analysis of fiber grating semiconductor laser operation in active mode-locking regime,” IEEE J. Select. Topics Quantum Electron., vol. 7, pp. 280-286, 2001.
    [69] M. Nakazawa, H. Kubota, A. Sahara and K. Tamura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron., vol. 34, pp. 1075-1081, 1998.
    [70] H. A. Haus, “A theory of forced modelocking,” IEEE J. Quantum Electron., vol. QE-11, pp. 323–330, 1975.
    [71] H. A. Haus, “Waves and fields in optoelectronics,” in Series in Solid State Physical Electronics. Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [72] Y. Li, C. Lou, G. Chang and Y. Gao, “Theoretical study on the actively mode-locked fiber laser with the q-parameter and the ABCD law,” IEEE Photon. Technol. Lett., vol. 11, pp. 1590-1592, 1999.
    [73] L. Poti, A. Bogoni and P. chelfi, “Experimental validation of an extended ABCD model for actively mode-locked fiber lasers,” IEEE Photon. Technol. Lett., vol. 13, pp. 562-564, 2001.
    [74] S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, T. Kitoh and M. Saruwatari, “Single channel 400 Gbit/s time-division multiplexed transmission of compensation,” Electron. Lett., vol. 32, pp. 916-917, 1996.
    [75]S. Diez, R. Ludwig and H. G. Weber, “All-optical switch for TDM and WDM/TDM systems demonstrated in a 640 Gbit/s demultiplexing experiment,” Electron. Lett., vol. 34, pp. 803-805, 1998.
    [76] G. P. Agrawal, Fiber-Optical Communication System, 3nd ed. New York: Wiley, 2002.
    [77] J. Gowar, Optical Communication Systems, Second Edition, Series in Optoelectronics (Prentice Hall, New York, 1993).
    [78] L. F. Mollenauer, R. H. Stolen and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. vol. 45, pp. 1095-1097, 1980.
    [79] N. Henmi, Y. Aoki, T. Ogata, T. Saito and S. Nakaya, “A new design arrangement of transmission fiber dispersion for suppressing nonlinear degradation in long-distance optical transmission systems with optical repeater amplifiers,” J. Lightwave Technol. Vol. 11, pp. 1615 –1617, 1993.
    [80] C. V. Shank, in Ultrashort Laser Pulses, Generation and Application,Second Edition, edited by W. Kaiser, Topics in Applied Physics (Springer- Verlag, Berlin, 1993), pp. 25–31.
    [81] J. A. R. Williams, N. Doran and I. Bennion, in Integrated Photonics
    Research, vol. 7, OSA Technical Digest Series (Optical Society of
    America, Washington, DC, 1995), pp. 233–235.
    [82] N. J. Smith, N. J. Doran, F. M. Knox and W. Forysiak, “Energy-scaling characteristics of solitons in strongly dispersion-managed fibers,” Opt. Lett., vol. 21, pp. 1981-1983, 1996.
    [83] R. C. Steele, G. R. Walker and N. G. Walker, “Sensitivity of optically preamplified receivers with optical filtering,” IEEE J. Lightwave Technol., vol. 3, pp. 545-547, 1991.
    [84] J. Santhanam, C. J. McKinstrie, T. I. Lakoba and G. P. Agrawal, “Effects of precompensation and postcompensation on timing jitter in dispersion-managed systems,” Opt. Lett. vol. 26, pp. 1131-1134, 2001.
    [85] M. M. K. Liu, Principle and Applications of Optical Communications, 1nd ed. IRWIN, 1996.
    [86] V. W. S. Chan, “Coherent optical space communications system: Architecture and technology issues,” in Proc. SPIE Control and Communication Technology in Laser Systems, vol. 295, pp. 10–17, 1981.
    [87] V.W. S. Chan et al., “Coherent intersatellite crosslink systems,” in Proc. SPIE Components for Fiber Optic Applications and Coherent Lightwave Communications, vol. 988, pp. 325–335, 1988.
    [88] V. W. S. Chan, “Optical space communications: Key building block for wide area space network,” in LEOS’99, San Francisco, CA, 1999.
    [89] V. W. S. Chan, “Optical space communication, ” IEEE J. Select. Topics Quantum Electron., pp. 959–975, 2000.
    [90] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev., vol. 131, pp. 2766–2788, 1963.
    [91] J. Livas, “High sensitivity optically preamplified 10 Gb/s receivers,” in OFC 1996, San Jose, CA, Feb. 1996. Postdeadline Paper.
    [92] T. E. Knibbe et al., “An integrated heterodyne receiver and spatial tracker for binary FSK communication,” in Proc. SPIE Free Space Communication Technologies VI, vol. 2123, pp. 188–199, 1994.
    [93] C. W. Helstrom, J. Liu and J. Gordon, “Quantum mechanical communicaton theory,” Proc. IEEE, vol. 58, pp. 1578–1598, 1970.
    [94] P. Van Hove and V.W. S. Chan, “Spatial acquisition algorithms and systems for optical ISL,” in IEEE Int. Conf. Communications, Boston, MA, June 1983, pp. E1.6.1–E1.6.7.
    [95] M. Z. Win et al., “Analysis of a spatial tracking subsystem for optical communications,” Proc. SPIE Free Space Communication Technologies IV, vol. 1635, pp. 318–325, 1992.
    [96] J. Homer, K. Kubik, B. Mojarrabi, I. D. Longstaff, E. Donskoi and M. Cherniakov, “Passive bistatic radar sensing with LEOS based transmitters,” Geoscience and Remote Sensing Symposium, IGARSS '02. 2002 IEEE International 1, pp. 438–440, 2002.
    [97] M. Toyoshima and K. Araki, “Far-field pattern measurement of an onboard laser transmitter use of a space-to-ground optical link,” Appl. Opt. 37, pp. 1720-1730, 1998.
    [98] S. Arnon, S. Rotman and N. S. Kopeika, “Optimum transmitter optics operture for satellite optical communication, ”IEEE Trans. on Aerospace and Electronic Systems, vol. 34, pp. 590-596, 1998.
    [99] M. Toyoshima, K. E. Wilson, J. James, G. Xu and J. R. Lesh, “Data analysis results from the GOLD experiments,” Proc. SPIE, vol. 2990, pp. 70-81, 1997.
    [100] E. J. Korevaar, J. J. Schuster, P. Adhikari, H. Hakakha, R. Rnigrok, R. Stieger, L. Fletcher and B. Riley, “Description of STRV-2 lasercom experimental operations,” Proc. SPIE, vol. 2990, pp. 60-69, 1997.
    [101] K. Kimura, K. Inagaki and Y. Karasawa, “Double-layered inclined orbit constellation for advanced satellite communications networks,” IEICE Trans. Communications, vol. E80-13, pp.93-102, 1997.
    [102] Y. Arimoto, Y. Hayano and W. Klaus, “High-speed optical feeder-link system using adaptive optics,” Proc. SPIE 2990, pp. 142-151, 1997.
    [103] G. C. Baister, P. V. Gatenby and J. Lewis, “SOUT optical intersatellite communication terminal elegant breadboard,” IEE Proceeding of Optoelectronics, vol. 142, pp. 279-287, 1995.
    [104] J. D. Barry and C. S. Mecherle, “Beam pointing error as a significant design parameter for satellite-borne, free-space optical communication systems,” Optical Engineering, vol. 24, pp. 1049-1054, 1985.
    [105] V. A. Skormin, M. A. Tascillo and D. J. Nicholson, “Jitter rejection technique in a satellite-based laser communication system,” Optical Engineering, vol.32, pp. 2764-2769, 1993.
    [106] DIRK J. KUIZENGA“FM and AM mode locking of the homogeneous laser--Part I Theory,” IEEE QUAKTUM ELECTRONICS, vol. 6, pp. 694-708, 1970.
    [107] S. Arnon and N. S. Kopeika, “Effect of particulate on Performance of optical communication in space and an adaptive method to minimize such effects,” Appl. Opt., vol 33, pp. 4930-4937, 1994.
    [108] S. Arnon, S. R. Rotman and N. S. Kopeika, “Performance limitation of free-space optical communication satellite networks due to vibrations: direct detection digital mode,” Optical Engineering, vol. 36, pp. 3148-3157, 1997.
    [109] A. Ma, J. C. Cartledge and H. E. Lassen, “ Performance implications of the thermal-induced frequency drift in fast wavelength switched systems with heterodyne detection,” J. Lightwave Technol. vol. 14, pp. 1090-1096, 1996.
    [110] M. Azizoglu and P. A. Humblet, “Envelope detection of orthogonal signals with phase noise,” Journal Lightwave Technique, vol. LT-5, pp. 469-477, 1987.
    [111] R. M. Gagliardi and S. Karp, “Optical communications,” Wiley & Sons, Inc, Second edition, pp. 8-20, 1995.
    [112] S. L. Tsao, H. C. Yu, Y. C. Lin, “Analysis of an optical satellite communication system with stabilized microwave reference note transmission,” Microwave and Optical Technol. Lett., vol. 33, pp. 149-151, 2002.
    [113] R. K. Schreyer and G. J. Sonek, “An optical transmitter/receiver system for wireless voice communication,” IEEE Transactions on Education, vol. 35, pp. 138-143, 1992.
    [114] S. Arnon, D. Sadot and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagation through the atmosphere for space optical communication, ” J. modern opt., vol. 41, pp. 1995-1972, 1994.
    [115] G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt., vol. 29, pp. 2031-2041, 1991.
    [116] S. Arnon and N. S. Kopeika, “Laser satellite communication network-vibration effect and possible solution,” Proceeding of The IEEE, vol. 85, pp. 1646-1661, 1997.
    [117] C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Transaction on Communication, vol. 37, pp. 252-260, 1989.
    [118] S. D. Personick, “Receiver design for digital fiber-optic communication system, part I,” J. Bell Syst. Technol., vol. 52, pp. 843-874, 1973.
    [119] O. K. Tonguz, M. O. Tanrikulu and L. G. Kazovsky, “Impact of finite frequency deviation on the performance of dual-filter heterodyne FSK lightwave systems,” J. Lightwave Technol., vol. 11, pp. 316-330, 1993.
    [120] L. G. Kazovsky and O. K. Tonguz, “ASK and FSK coherent lightwave system: A simplified approximate analysis,” J. Lightwave Technol., vol. 8, pp. 338-352, 1990.

    QR CODE