簡易檢索 / 詳目顯示

研究生: 王少妘
Wang, Shao-Yun
論文名稱: 中孔洞氧化石墨烯奈米粒子表面吸附大氣中之氧氣及水氣在光譜上的影響及應用
Effects of Atmospheric Oxygen and Water Adsorbed on the Surface of Mesoporous Graphene Oxide Nanoparticles on the Spectrum and Their Applications
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 劉沂欣
Liu, Yi-Hsin
吳思翰
Wu, Si-Han
賴韻如
Lai, Yun-Ju
口試日期: 2024/07/03
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 128
中文關鍵詞: 中孔洞氧化石墨烯奈米粒子單線態氧光熱轉換表面修飾銀奈米粒子
英文關鍵詞: mesoporous graphene oxide nanoparticles, singlet state oxygen, photothermal conversion, surface modification, silver nanoparticle
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401406
論文種類: 學術論文
相關次數: 點閱:121下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用中孔洞氧化石墨烯奈米粒子 (Mesoporous graphene oxide nanoparticles, MGNs) 表面吸附氧氣與水氣,探討在光照下與表面吸附氣體之相互作用。MGNs表面存在碳自由基,並在照光後透過單線氧捕捉劑 (1,3-Diphenylisobenzofuran, DPBF) 證實其可以作為一個光敏劑,在照光後具有與氧氣能量交換的能力,並產生單線態氧 (Singlet state oxygen, 1O2)。此外,利用MGNs的中孔洞特性吸附水氣,結合表面類似於氧化石墨烯具有光熱轉換的能力,進行水吸附與脫附的循環。我們採用化學氣相沉積法,於高溫 (825 °С) 下裂解乙烯,成功在中孔洞沸石奈米粒子 (Mesoporous zeolite nanoparticles, MZNs) 表面形成了類似氧化石墨烯的碳層,並具有碳自由基及親水性官能基。經過高溫處理後,孔洞材料仍保持中孔 (3–8 nm) 及微孔 (<1.5 nm) 的特性,以及具有高比表面積 (800–900 m2/g)。MGNs展現出強大的光吸收能力以及在近紅外光 (1000–2500 nm) 範圍內的發光特性。基於這些特點,MGNs可以作為光動力療法 (Photodynamic therapy, PDT) 中的光敏劑,提供新穎且有吸引力的治療方法,同時還可作為光熱材料,解決水資源短缺危機。為了解決MGNs團聚的問題,我們在MZNs表面修飾上聚乙二醇,利用空間斥力讓材料能夠均勻分散。而後,選擇MZNs複合銀奈米粒子,因為銀奈米粒子本身也具有特殊的光化學特性。我們加入銀前驅物並且利用大氣壓微電漿法,有效促進了銀的還原,使分散性之孔洞材料同時具有產生活性氧物質的能力。最終,得到了複合材料Ag@s-PEG-MZNs,為生物醫學領域發展出新的可能性。

    This study uses mesoporous graphene oxide nanoparticles (MGNs) to adsorb oxygen and water on the surface to explore the interaction with surface-adsorbed gases under irradiation. The surface of MGNs have carbon radicals, and after irradiation passes through singlet oxygen probe (1,3-diphenylisobenzofuran, DPBF), which confirms that it can be used as a photosensitizer, with the ability to exchange energy with oxygen after irradiation and generate singlet states oxygen (1O2). Furthermore, the mesoporosity of MGNs is used to absorb water, and the surface is similar to graphene oxides, with photothermal conversion capabilities to perform water adsorption and desorption cycles. We used chemical vapor deposition to cleavage ethylene at high temperatures, and successfully formed a thin carbon layer similar to graphene oxide on the surface of mesoporous zeolite nanoparticles (MZNs). The thin carbon layer has carbon radicals and hydrophilic functional groups. The porous materials still maintain mesoporous (3–8 nm) and microporous (<1.5 nm), as well as a high surface area (800–900 m2/g). MGNs exhibit strong optical absorption capabilities and the properties of photoluminescence in near-infrared. On the basis of these properties, MGNs can used as a photosensitizer in photodynamic therapy (PDT) to provide novel and attractive treatments. In addition, MGNs can also be used as photothermal materials to solve water shortages crisis. To solve the problem of MGNs aggregation, we modified the surface of MZNs with polyethylene glycol that through spatial repulsion to allow the material to be distributed uniformly. Then, MZNs composite silver nanoparticles were selected because the silver nanoparticles themselves also have special photochemical properties. We add silver precursor and use atmospheric pressure microplasma method to effectively promote silver reduction, so that the dispersed porous materials have the ability to generate reactive oxygen species. Finally, the composite material Ag@s-PEG-MZN has been obtained, opening up new possibilities in the biomedical field.

    謝誌 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究目的與動機 1 1.2 碳基奈米材料的特性與延伸應用 2 1.2.1 氧化石墨烯 (Graphene oxide, GO) 的特性 3 1.2.2 光療法的種類與機制 4 1.2.3 單線態氧 (Singlet oxygen, 1O2) 的檢測 5 1.3 孔洞材料的吸附性質與應用 6 1.3.1 奈米孔洞材料的水收集應用 6 1.3.2 中孔洞沸石奈米粒子 7 1.3.3 中孔洞氧化石墨烯奈米粒子 8 1.4 表面修飾與孔洞材料摻雜金屬奈米粒子 9 1.4.1 奈米粒子聚乙二醇化 (PEGylation) 10 1.4.2 銀奈米粒子之細胞毒性 10 1.4.3 大氣壓微電漿法 (Atmospheric pressure microplasma) 11 第二章 實驗方法 12 2.1 化學藥品 12 2.2 中孔洞奈米材料之合成 13 2.2.1 沸石晶種之合成 13 2.2.2 中孔洞沸石奈米粒子 (MZNs) 之合成 15 2.2.3 中孔洞氧化石墨烯奈米粒子 (MGNs) 之合成 16 2.3 中孔洞表面修飾高分子奈米粒子 (PEG-MZNs) 之合成 17 2.4 銀複合中孔洞奈米粒子 (Ag@PEG-MZNs) 之合成 18 2.4.1 孔洞吸附銀前驅物 18 2.4.2 銀奈米粒子之還原 18 2.5 細胞實驗 19 2.6 材料合成及鑑定儀器 20 2.6.1 化學氣相沉積儀 (CVD) 20 2.6.2 常壓微電漿電化學反應器 (Atmospheric–Pressure Microplasma Electrochemical Reactor) 20 2.6.3 紫外–可見光光譜儀 (Ultraviolet–Visible Spectroscopy, UV–Vis) 21 2.6.4 顯微拉曼光譜儀 (Microscope Raman Spectroscopy System) 21 2.6.5 顯微共軛焦拉曼光譜儀 (Confocal Microscope Raman Spectroscopy System) 22 2.6.6 反射式螢光光譜儀 (Photoluminescence, PL) 22 2.6.7 比表面積及孔徑分析儀 (BET) 23 2.6.8 電子順磁共振光譜儀 (Electron Paramagnetic Resonance spectrometer, EPR) 23 2.6.9 介面電位及粒徑分析儀 (Zeta-Potential & Particle Size Analyzer) 24 2.6.10 衰減式全反射傅立葉轉換紅外線光譜 (Attenuated Total Reflection Fourier-Transform Infrared Spectrometer, ATR-FTIR) 24 2.6.11 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 25 2.6.12 場發射穿透式電子顯微鏡 (Field Emission Transmission Electron Microscope) 25 2.6.13 元素分析儀 (Elemental Analyzer) 26 2.6.14 熱分析設備 (Thermal Analyzers) 26 2.6.15 X光粉末繞射儀 (Powder X-ray Diffraction, P-XRD) 27 2.6.16 高能量化學分析電子能譜儀 (Hard X-ray Photoelectron Spectroscopy, XPS) 28 2.6.17 多重細胞螢光共軛焦影像擷取系統 28 第三章 結果與討論 29 3.1 中孔洞奈米材料之合成機制及鑑定 29 3.1.1 形貌及孔洞性質 29 3.1.2 表面石墨烯化之鑑定 37 3.1.3 孔洞材料複合銀奈米粒子之鑑定 42 3.2 中孔洞材料表面吸附水氣及氧氣能力之鑑定以及對於光譜的影響 55 3.2.1 中孔洞材料表面吸附水氣及氧氣能力之鑑定 55 3.2.2 評估中孔洞材料透過光熱轉換驅動水吸脫附之能力 59 3.2.3 中孔洞碳材表面吸附氣體影響發光與自由基之探討 67 3.3 奈米材料與氧氣能量交換之鑑定 71 3.3.1 碳基奈米材料與市售光敏劑在吸收光譜上之比較 71 3.3.2 奈米材料加入DPBF溶液中的穩定性 73 3.3.3 奈米材料作為光敏劑的影響 74 3.4 孔洞碳材在生物醫學的應用 83 3.4.1 孔洞碳材在細胞培養基的分散性 83 3.4.2 孔洞碳材吸附螢光染劑後的發光能力 87 3.4.3 孔洞碳材進入細胞的可行性 90 第四章 結論與未來展望 94 4.1 結論 94 4.2 未來展望 95 參考文獻 96 附錄 102 S1.1 孔洞碳材粒徑量測之強度分布 102 S1.2 觀察孔洞碳材進入細胞的行為 113

    1. Madima, N.; Mishra, S.; Inamuddin, I.; Mishra, A., Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environmental Chemistry Letters 2020, 18, 1169–1191.
    2. Patel, D. K.; Kim, H.-B.; Dutta, S. D.; Ganguly, K.; Lim, K.-T., Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 2020, 13 (7), 1679.
    3. Kundzewicz, Z. W.; Mata, L. J.; Arnell, N.; Doll, P.; Kabat, P.; Jimenez, B.; Miller, K.; Oki, T.; Zekai, S.; Shiklomanov, I., Freshwater resources and their management. 2007.
    4. Gusain, R.; Kumar, N.; Ray, S. S., Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews 2020, 405, 213111.
    5. Makharza, S.; Cirillo, G.; Bachmatiuk, A.; Ibrahim, I.; Ioannides, N.; Trzebicka, B.; Hampel, S.; Rümmeli, M. H., Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. Journal of nanoparticle research 2013, 15, 1–26.
    6. Hung, A. H.; Holbrook, R. J.; Rotz, M. W.; Glasscock, C. J.; Mansukhani, N. D.; MacRenaris, K. W.; Manus, L. M.; Duch, M. C.; Dam, K. T.; Hersam, M. C., Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. ACS nano 2014, 8 (10), 10168–10177.
    7. Liu, J.; Cui, L.; Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta biomaterialia 2013, 9 (12), 9243–9257.
    8. Bellier, N.; Baipaywad, P.; Ryu, N.; Lee, J. Y.; Park, H., Recent biomedical advancements in graphene oxide-and reduced graphene oxide-based nanocomposite nanocarriers. Biomaterials research 2022, 26 (1), 65.
    9. Shang, J.; Ma, L.; Li, J.; Ai, W.; Yu, T.; Gurzadyan, G. G., The origin of fluorescence from graphene oxide. Scientific reports 2012, 2 (1), 792.
    10. Gurunathan, S.; Han, J. W.; Kim, J.-H., Green chemistry approach for the synthesis of biocompatible graphene. International journal of nanomedicine 2013, 2719–2732.
    11. Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society 2011, 133 (17), 6825–6831.
    12. Jacquemin, L.; Song, Z.; Le Breton, N.; Nishina, Y.; Choua, S.; Reina, G.; Bianco, A., Mechanisms of radical formation on chemically modified graphene oxide under near infrared irradiation. Small 2023, 19 (16), 2207229.
    13. Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q., Photodynamic therapy. Journal of National Cancer Institute 1998, 90 (12), 889–905.
    14. Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and photodynamic therapy 2004, 1 (4), 279–293.
    15. Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Krysko, D. V., Which cell death modality wins the contest for photodynamic therapy of cancer? Cell death & disease 2022, 13 (5), 455.
    16. Ogilby, P. R., Singlet oxygen: there is indeed something new under the sun. Chemical Society Reviews 2010, 39 (8), 3181–3209.
    17. Entradas, T.; Waldron, S.; Volk, M., The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. Journal of Photochemistry and Photobiology B: Biology 2020, 204, 111787.
    18. Hardwick, L. J., Concluding remarks: a summary of the Faraday Discussion on rechargeable non-aqueous metal–oxygen batteries. Faraday Discussions 2024, 248, 412–422.
    19. Singh, A.; McIntyre, N. R.; Koroll, G. W., Photochemical formation of metastable species from 1, 3‐diphenylisobenzofuran. Photochemistry and Photobiology 1978, 28 (4‐5), 595–601.
    20. Guan, Q.; Fu, D.-D.; Li, Y.-A.; Kong, X.-M.; Wei, Z.-Y.; Li, W.-Y.; Zhang, S.-J.; Dong, Y.-B., BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy. IScience 2019, 14, 180–198.
    21. Bennett, T. D.; Coudert, F.-X.; James, S. L.; Cooper, A. I., The changing state of porous materials. Nature Materials 2021, 20 (9), 1179–1187.
    22. Zhang, S.; Fu, J.; Xing, G.; Zhu, W.; Ben, T., Recent advances in porous adsorbent assisted atmospheric water harvesting: a review of adsorbent materials. 2023.
    23. Xu, W.; Yaghi, O. M., Metal–organic frameworks for water harvesting from air, anywhere, anytime. ACS central science 2020, 6 (8), 1348–1354.
    24. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
    25. Furukawa, H.; Gándara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water adsorption in porous metal–organic frameworks and related materials. Journal of the American Chemical Society 2014, 136 (11), 4369–4381.
    26. Ng, E.-P.; Mintova, S., Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials 2008, 114 (1–3), 1–26.
    27. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Ordered mesoporous zeolite thin films with perpendicular reticular nanochannels of wafer size area. Chemistry of Materials 2018, 30 (22), 8303–8313.
    28. 張云柔. 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用. 國立臺灣師範大學, 台北市, 2019.
    29. Shi, L.; Zhang, J.; Zhao, M.; Tang, S.; Cheng, X.; Zhang, W.; Li, W.; Liu, X.; Peng, H.; Wang, Q., Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021, 13 (24), 10748–10764.
    30. Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M., PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews 2016, 99, 28–51.
    31. Sanchez-Cano, C.; Carril, M., Recent developments in the design of non-biofouling coatings for nanoparticles and surfaces. International journal of molecular sciences 2020, 21 (3), 1007.
    32. Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S., Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6 (4), 715–728.
    33. Akter, M.; Sikder, M. T.; Rahman, M. M.; Ullah, A. A.; Hossain, K. F. B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M., A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of advanced research 2018, 9, 1–16.
    34. Cameron, S. J.; Hosseinian, F.; Willmore, W. G., A current overview of the biological and cellular effects of nanosilver. International journal of molecular sciences 2018, 19 (7), 2030.
    35. Durán, N.; Durán, M.; De Jesus, M. B.; Seabra, A. B.; Fávaro, W. J.; Nakazato, G., Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: nanotechnology, biology and medicine 2016, 12 (3), 789–799.
    36. He, D.; Dorantes-Aranda, J. J.; Waite, T. D., Silver Nanoparticle Algae Interactions: Oxidative Dissolution, Reactive Oxygen Species Generation and Synergistic Toxic Effects. Environmental science & technology 2012, 46 (16), 8731–8738.
    37. Chiang, W. H.; Mariotti, D.; Sankaran, R. M.; Eden, J. G.; Ostrikov, K., Microplasmas for advanced materials and devices. Advanced Materials 2020, 32 (18), 1905508.
    38. Bruggeman, P. J.; Kushner, M. J.; Locke, B. R.; Gardeniers, J. G.; Graham, W.; Graves, D. B.; Hofman-Caris, R.; Maric, D.; Reid, J. P.; Ceriani, E., Plasma–liquid interactions: a review and roadmap. Plasma sources science and technology 2016, 25 (5), 053002.
    39. Sun, D.; Turner, J.; Jiang, N.; Zhu, S.; Zhang, L.; Falzon, B. G.; McCoy, C. P.; Maguire, P.; Mariotti, D.; Sun, D., Atmospheric pressure microplasma for antibacterial silver nanoparticle/chitosan nanocomposites with tailored properties. Composites Science and Technology 2020, 186, 107911.
    40. Multone, X. High vacuum chemical vapor deposition (HV-CVD) of alumina thin films; EPFL: 2009.
    41. Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z., Chemical vapour deposition. Nature Reviews Methods Primers 2021, 1 (1), 5.
    42. Arkles, B., Tailoring surfaces with silanes. Chemtech 1977, 7, 766–778.
    43. Morozzi, P.; Ballarin, B.; Arcozzi, S.; Brattich, E.; Lucarelli, F.; Nava, S.; Gómez-Cascales, P. J.; Orza, J. A.; Tositti, L., Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters. Atmospheric Environment 2021, 252, 118297.
    44. He, Y.; Zhang, L.; Zhu, D.; Song, C., Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. International Journal of Nanomedicine 2014, 4055–4066.
    45. 王心妤. 石墨烯化中孔洞沸石粒子複合電漿材料於表面增強拉曼之應用. 國立臺灣師範大學, 台北市, 2021.
    46. Li, M.; Cushing, S. K.; Zhou, X.; Guo, S.; Wu, N., Fingerprinting photoluminescence of functional groups in graphene oxide. Journal of Materials Chemistry 2012, 22 (44), 23374–23379.
    47. Thomson, S., Tuning the Photoluminescence of Graphene Oxide. Edinbur. Instr. Appl. Note 2018.
    48. Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S., Tunable photoluminescence from graphene oxide. Angewandte Chemie International Edition 2012, 51 (27), 6662–6666.
    49. 賴玟均. 一步驟常壓微電漿法合成氧化石墨烯包覆銀奈米粒子負載於中孔洞沸石材料以應用於小分子的表面增強拉曼檢測. 國立臺灣師範大學, 台北市, 2023.
    50. Prieto, P.; Nistor, V.; Nouneh, K.; Oyama, M.; Abd-Lefdil, M.; Díaz, R., XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Applied Surface Science 2012, 258 (22), 8807–8813.
    51. Wang, C.; Cao, L.; Huang, J., Influences of acid and heat treatments on the structure and water vapor adsorption property of natural zeolite. Surface and Interface Analysis 2017, 49 (12), 1249–1255.
    52. Li, X.; Wang, Y.; Liu, T.; Zhang, Y.; Wang, C.; Xie, B., Ultrasmall graphene oxide for combination of enhanced chemotherapy and photothermal therapy of breast cancer. Colloids and Surfaces B: Biointerfaces 2023, 225, 113288.
    53. Ruan, X.; Sun, Y.; Du, W.; Tang, Y.; Liu, Q.; Zhang, Z.; Doherty, W.; Frost, R. L.; Qian, G.; Tsang, D. C., Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresource technology 2019, 281, 457–468.
    54. 簡佑珊. 以溶劑裂解合成中孔洞氧化石墨烯及其摻雜之應用. 國立臺灣師範大學, 台北市, 2022.
    55. Tung, V. C.; Luo, J.; Kim, F., 舊材料的新見解—氧化石墨烯之界面活性.
    56. Gionco, C.; Giamello, E.; Mino, L.; Paganini, M. C., The interaction of oxygen with the surface of CeO 2–TiO 2 mixed systems: an example of fully reversible surface-to-molecule electron transfer. Physical Chemistry Chemical Physics 2014, 16 (39), 21438–21445.
    57. Hoebeke, M.; Damoiseau, X., Determination of the singlet oxygen quantum yield of bacteriochlorin a: a comparative study in phosphate buffer and aqueous dispersion of dimiristoyl-l-α-phosphatidylcholine liposomes. Photochemical & Photobiological Sciences 2002, 1 (4), 283–287.
    58. Zhang, X. F.; Feng, N., Photoinduced Electron Transfer‐based Halogen‐free Photosensitizers: Covalent meso‐Aryl (Phenyl, Naphthyl, Anthryl, and Pyrenyl) as Electron Donors to Effectively Induce the Formation of the Excited Triplet State and Singlet Oxygen for BODIPY Compounds. Chemistry–An Asian Journal 2017, 12 (18), 2447–2456.
    59. Sunderrajan, S.; Miranda, L. R.; Pennathur, G., Improved stability and catalytic activity of graphene oxide/chitosan hybrid beads loaded with porcine liver esterase. Preparative Biochemistry and Biotechnology 2018, 48 (4), 343–351.
    60. Bhopate, D. P.; Mahajan, P. G.; Garadkar, K. M.; Kolekar, G. B.; Patil, S. R., Pyrene nanoparticles as a novel FRET probe for detection of rhodamine 6G: spectroscopic ruler for textile effluent. RSC advances 2014, 4 (109), 63866–63874.
    61. Kubin, R. F.; Fletcher, A. N., Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence 1982, 27 (4), 455–462.
    62. Selanger, K.; Falnes, J.; Sikkeland, T., Fluorescence lifetime studies of Rhodamine 6G in methanol. The Journal of Physical Chemistry 1977, 81 (20), 1960–1963.
    63. Doveiko, D.; Kubiak-Ossowska, K.; Chen, Y., Impact of the Crystal Structure of Silica Nanoparticles on Rhodamine 6G Adsorption: A Molecular Dynamics Study. ACS omega 2024, 9 (3), 4123–4136.
    64. Bavali, A.; Parvin, P.; Mortazavi, S. Z.; Mohammadian, M.; Pour, M. M., Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions. Applied optics 2014, 53 (24), 5398–5409.
    65. Magut, P. K.; Das, S.; Fernand, V. E.; Losso, J.; McDonough, K.; Naylor, B. M.; Aggarwal, S.; Warner, I. M., Tunable cytotoxicity of rhodamine 6G via anion variations. Journal of the American Chemical Society 2013, 135 (42), 15873–15879.
    66. Kolarikova, M.; Hosikova, B.; Dilenko, H.; Barton‐Tomankova, K.; Valkova, L.; Bajgar, R.; Malina, L.; Kolarova, H., Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Medicinal Research Reviews 2023, 43 (4), 717–774.

    下載圖示
    QR CODE