簡易檢索 / 詳目顯示

研究生: 曾信喆
Tseng, Hsin-Che
論文名稱: 探討閱讀理解提示的類型對國中生數學建模問題的表現與閱讀興趣之影響
Effects of types of reading comprehension prompts on the performance and reading interest of middle school students in mathematical modeling problems
指導教授: 楊凱琳
Yang, Kai-Lin
口試委員: 鄭英豪
Cheng, Ying-Hao
王婷瑩
Wang, Ting-Ying
楊凱琳
Yang, Kai-Lin
口試日期: 2022/07/16
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 135
中文關鍵詞: 數學建模數學知識閱讀興趣閱讀策略閱讀理解
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201027
論文種類: 學術論文
相關次數: 點閱:173下載:55
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討不同類型的閱讀理解提示是否會影響中學生數學建模問題的表現與閱讀興趣,並檢驗閱讀理解提示的方式、數學知識以及自覺閱讀策略對數學建模能力的影響,並依照建模能力對臺灣中學生的分群得知臺灣中學生建模能力的現況。基於此研究目的,本研究對臺灣228名八年級學生施測無閱讀理解提示以及兩種閱讀理解提示介入的數學建模問題、數學知識測驗以及閱讀情意與策略量表,共有223個有效樣本。研究發現:(1)閱讀理解提示的有無與種類皆無法顯著影響建模能力;(2)閱讀理解提示的有無與種類皆無法顯著影響閱讀興趣;(3)數學知識顯著地正向影響建構情境模型、假設變數、建構數學模型以及數學計算共四項建模能力。自覺閱讀策略僅顯著地正向影響假設變數的能力;(4)臺灣八年級學生的建模能力現況共分為三種,其中在三種建模能力分群中,僅數學知識的平均表現有顯著差異。由以上結論可推論閱讀理解無法對建模表現產生影響,數學知識到達一定程度後也無法再對建模表現產生影響。本研究建議教師可使用閱讀策略教學以提升臺灣中學生相對較弱的假設變數能力,並提出可能尚有變數會影響建模能力待釐清,仍需後續研究的共同努力。

    第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 3 第三節 研究目的與研究問題 4 第四節 名詞界定 5 第二章 文獻探討 8 第一節 數學建模之相關研究 8 第二節 閱讀理解之相關研究 14 第三節 捷思 20 第四節 其他與數學建模子能力有關的因素 22 第三章 研究方法 25 第一節 研究設計 25 第二節 研究對象 28 第三節 研究工具 30 第四節 資料處理與分析 55 第五節 研究流程 63 第四章 研究結果 67 第一節 閱讀理解提示對建模能力與閱讀興趣之影響 67 第二節 預測建模能力 79 第三節 建模子能力的分群 92 第五章 研究結論與對未來研究建議 98 第一節 研究結論 98 第二節 研究建議 102 第三節 研究限制 103 參考文獻 104 附錄一 問卷知情說明書 108 附錄二 數學建模問卷(前導版) 109 附錄三 特定型閱讀理解提示(前導版) 116 附錄四 捷思型閱讀理解提示(前導版) 117 附錄五 數學建模 A 卷(正式版) 118 附錄六 數學建模 B 卷(正式版) 123 附錄七 數學建模 C 卷(正式版) 128 附錄八 數學知識測驗 133 附錄九 閱讀情意與策略量表 135

    Blum, W., & Leiß, D. (2007). How do Students and Teachers Deal with Modelling Problems? In Mathematical Modelling (pp. 222–231). https://doi.org/10.1533/9780857099419.5.221
    Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of mathematical modelling and application, 1(1), 45-58.
    Blum, W., & Leiss, D. (2005). Filling Up “-the problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In CERME 4–Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1623-1633).
    Chang, Y.-P., Krawitz, J., Schukajlow, S., & Yang, K.-L. (2019). Comparing German and Taiwanese secondary school students’ knowledge in solving mathematical modelling tasks requiring their assumptions. ZDM, 52(1), 59–72. https://doi.org/10.1007/s11858-019-01090-4
    Common Core State Standards Initiative (CCSSI) (2010). Common Core State Standards for Mathematics.
    Cross, D. R., & Paris, S. G. (1988). Developmental and instructional analyses of children's metacognition and reading comprehension. Journal of Educational Psychology, 80(2), 131–142. https://doi.org/10.1037/0022-0663.80.2.131
    Corte, E., Verschaffel, L., & Ven, A. (2001). Improving text comprehension strategies in upper primary school children: A design experiment. British Journal of Educational Psychology, 71(4), 531–559. https://doi.org/10.1348/000709901158668
    English, L. D. (2006). Mathematical modeling in the primary school: Children's construction of a consumer guide. Educational Studies in Mathematics, 63(3), 303-323. https://doi.org/10.1007/s10649-005-9013-1
    Fennema, E., Sowder, J., & Carpenter, T. P. (1999). Creating classrooms that promote understanding. In Mathematics classrooms that promote understanding (pp. 197-212). https://doi.org/10.4324/9781410602619-19
    Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143-162. https://doi.org/10.1007/bf02655886
    Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual review of psychology, 62(1), 451-482.
    Hankeln, C. (2020). Mathematical modeling in Germany and France: a comparison of students’ modeling processes. Educational Studies in Mathematics, 103(2), 209-229. https://doi.org/10.1007/s10649-019-09931-5
    Høgheim, S., & Reber, R. (2017). Eliciting mathematics interest: New directions for context personalization and example choice. The Journal of Experimental Education, 85(4), 597-613. https://doi.org/10.1080/00220973.2016.1268085
    Kaiser, G. (2007). Modelling and modelling competencies in school. Mathematical modelling (ICTMA 12): Education, engineering and economics, 110-119. https://doi.org/10.1533/9780857099419.3.110
    Kirsch, I. S. (2001). The International Adult Literacy Survey (IALS): Understanding What Was Measured. ETS Research Report Series, 2001(2), i–61. https://doi.org/10.1002/j.2333-8504.2001.tb01867.x
    Krawitz, J., Chang, YP., Yang, KL., & Schukajlow, S. (2021). The role of reading comprehension in mathematical modelling: improving the construction of a real-world model and interest in Germany and Taiwan. Educational Studies in Mathematics, 109, 337–359. https://doi.org/10.1007/s10649-021-10058-9
    Krawitz, J., & Schukajlow, S. (2018). Do students value modelling problems, and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM, 50, 143-157. https://doi.org/10.1007/s11858-017-0893-1
    Lance, C. E., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported cutoff criteria: What did they really say? Organizational research methods, 9(2), 202-220. https://doi.org/10.1177/1094428105284919
    Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling—Task analyses, student competencies, and teacher interventions. Journal für Mathematik-Didaktik, 31(1), 119-141. https://doi.org/10.1007/s13138-010-0006-y
    Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical thinking and learning, 5(2), 157-189. https://doi.org/10.1080/10986065.2003.9679998
    Linnenbrink‐Garcia, L., Patall, E. A., & Messersmith, E. E. (2013). Antecedents and consequences of situational interest. British Journal of Educational Psychology, 83(4), 591-614. https://doi.org/10.1111/j.2044-8279.2012.02080.x
    Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113-142. https://doi.org/10.1007/bf02655885
    Mullis, I. V., & Martin, M. O. (2017). TIMSS 2019 Assessment Frameworks. International Association for the Evaluation of Educational Achievement.
    Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In 3rd Mediterranean conference on mathematical education (pp.115-124).
    Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In Blum, W., Galbraith, P.L., Henn, HW., & Niss, M. (Eds.) Modelling and applications in mathematics education: New ICMI study series, 10. https://doi.org/10.1007/978-0-387-29822-1_1
    Novotná, J., Eisenmann, P., Přibyl, J., Ondrušová, J., & Břehovský, J. (2014). Problem solving in school mathematics based on heuristic strategies. Journal on Efficiency and Responsibility in Education and Science, 7(1), 1-6. https://doi.org/10.7160/eriesj.2014.070101
    Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural equation modeling: A multidisciplinary Journal, 14(4), 535-569. https://doi.org/10.1080/10705510701575396
    Organisation for Economic Co-operation and Development. (OECD) (2017). PISA 2015 Assessment and Analytical Framework. https://doi.org/10.1787/9789264255425-en
    Paris, S. G., & Lindauer, B. K. (1982). The development of cognitive skills during childhood. Cognitive Science, University of Michigan.
    Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton university press. https://doi.org/10.2307/j.ctvc773pk
    Renninger, K. A., Ewen, L., & Lasher, A. (2002). Individual interest as context in expository text and mathematical word problems. Learning and Instruction, 12(4), 467-490. https://doi.org/10.1016/s0959-4752(01)00012-3
    Rosyada, M. N., & Retnawati, H. (2021). Challenges of Mathematics Learning with Heuristic Strategies. Al-Jabar: Jurnal Pendidikan Matematika, 12(1), 161-173. https://doi.org/10.24042/ajpm.v12i1.8730
    Rouse, C. A., Alber‐Morgan, S. R., Cullen, J. M., & Sawyer, M. (2014). Using prompt fading to teach self‐questioning to fifth graders with LD: Effects on reading comprehension. Learning Disabilities Research & Practice, 29(3), 117-125. https://doi.org/10.1111/ldrp.12036
    Schilling, M. A. (2002). Technology success and failure in winner-take-all markets: The impact of learning orientation, timing, and network externalities. Academy of management journal, 45(2), 387-398. https://doi.org/10.5465/3069353
    Schoenfeld, A. H. (1985). Mathematical problem solving. Academic press. https://doi.org/10.1016/C2013-0-05012-8
    Schunk, D. H., & Pajares, F. (2009). Self-efficacy theory. In Handbook of motivation at school (pp. 49-68). Routledge. https://doi.org/10.4324/9780203879498
    Suzanne Hidi & K. Ann Renninger (2006) The Four-Phase Model of Interest Development, Educational Psychologist, 41, 111-127. https://doi.org/10.1207/s15326985ep4102_4
    Tambunan, H. (2018). Impact of heuristic strategy on students’ mathematics ability in high order thinking. International Electronic Journal of Mathematics Education, 13(3), 321-328. https://doi.org/10.12973/iejme/3928
    Yang, K. L., & Lin, F. L. (2009). Designing innovative worksheets for improving reading comprehension of geometry proof. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, C. (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, 5 (pp.377-384). Thessaloniki, Greece: PME.
    柯華葳、詹益綾 (2007)。國民中學閱讀推理篩選測驗編製報告。測驗學刊,54(2),429-449。https://doi.org/10.7108/PT.200712.0429
    洪碧霞、林素微、吳裕益(2011)。臺灣九年級學生閱讀樂趣與策略對 PISA 閱讀素養解釋力之探討。課程與教學,14(4)。https://doi.org/10.6384/CIQ.201110.0002
    教育部 (1998)。國民中小學九年一貫課程綱要數學學習領域。
    教育部 (2014)。十二年國民基本教育課程綱要總綱。
    教育部 (2018)。十二年國民基本教育課程綱要數學領域。
    教育部(2018)。素養導向「紙筆測驗」範例試題(定稿版)。
    蘇慧珍、楊凱琳、陳佳陽(2017)。閱讀策略教學對高二學生數學學習表現的影響,教育科學研究期刊,62(1)。https://doi.org/10.6209/JORIES.2017.62(1).02

    下載圖示
    QR CODE