簡易檢索 / 詳目顯示

研究生: 蔡丞坤
Tsai, Cheng-Kun
論文名稱: 以核磁共振法探討陰道滴蟲Myb2蛋白質和去氧核酸的結合機制
DNA Recognition Mechanism of Myb2 Protein Derived from Trichomonas vaginalis by NMR technology
指導教授: 黃太煌
Huang, Tai-Huang
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 105
中文關鍵詞: 核磁共振法Myb2蛋白質去氧核酸
論文種類: 學術論文
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 源於陰道滴蟲的Myb2蛋白質被發現會與特定的MRE2r與MRE2f去氧核酸序列結合,此二序列同時與鐵離子的活性誘導和ap65-1基因轉錄有關.剪裁縮短後的Myb2蛋白質氨基酸長度40-156 (Myb2x)仍保持著與去氧核酸相似的結合能力.利用核磁共振法計算在水溶液中Myb2x蛋白質結構和與MRE2f去氧核酸結合後的複合物結構.結果顯示Myb2x蛋白質在兩者結構中均含三個α螺旋的R2區域和三個α螺旋的R3區域. Myb2x蛋白質裡的第三α螺旋和linker比起與MRE2f去氧核酸結合後的結構,顯得相當鬆散沒有結構性.Myb2x蛋白質與MRE2f去氧核酸結合後的氨基酸骨架變得更受拘束不能自由擺動.結果也顯示兩者MRE2r與MRE2f去氧核酸結合在Myb2x蛋白質上相同的位置,Myb2x蛋白質會與MRE2r或MRE2f去氧核酸分別形成一比一比例結合的複合物.另外,也顯示鐵離子並不會影響Myb2x蛋白質,Myb2xMRE2r蛋白質去氧核酸複合物,和Myb2xMRE2f蛋白質去氧核酸複合物三者的整體結構.也不會影響Myb2x蛋白質與MRE2r或MRE2f去氧核酸結合形成Myb2xMRE2r或Myb2xMRE2f蛋白質去氧核酸兩種複合物. MRE2f去氧核酸與Myb2x蛋白質結合後, ATAC鹼基的化學位移發生明顯變化.根據二維及三維的NOESY實驗及蛋白質側鏈的化學位移擾動變化分析,顯示MRE2f去氧核酸結合至Myb2x蛋白質的位置是分布在蛋白質的N端,R2區域的第三α螺旋,及R3區域的第三α螺旋位置.更甚者,蛋白質的N端是直接接觸去氧核酸的.在蛋白質與去氧核酸之間的NOE訊號由於缺少完整的定義,而至不能獲得精確Myb2x蛋白質與MRE2f去氧核酸結合的複合物結構.然而,卻可以利用B形式的去氧核酸結構,模擬與Myb2x蛋白質的複合物.

    The Myb2 protein from Trichomonas vaginalis was found to interact with specific sequence contexts MRE2r and MRE2f, and is involved in activation of both iron-inducible and growth-related transcription of the ap65-1 gene. The truncated Myb2 protein, Myb2x, spanning amino acid
    sequence 40-156, has been found to retain similar DNA binding affinity. We have determined Myb2x solution structures on free form and MRE2f-bound form by NMR. Both structures contain three α-helices at R2 domain and three α-helices at R3 domain. In free form the third helix and the linker are more flexible than in complex. Upon binding to
    MRE2f, the backbone dynamics of Myb2x protein become less flexible. Our results shown that the MRE2r and MRE2f share the same binding site on Myb2x, and the protein to DNA binding ratio is about one to one. On the other hand, the iron does not cause overall structure change in free
    Myb2x and two complexes, and does not interfere the process of MRE2r/MRE2f binding to Myb2x protein. The larger chemical shift perturbation of MRE2f on Myb2x-bound form appears at four bases ATAC. According to the 2D/3D-filtered NOESY experiments and the perturbation analysis of side-chain chemical shift, the DNA binding site is most likely distributed in the N-terminal, α3-helix of R2 domain, and
    α6-helix of R3 domain. Moreover, the N-terminal head directly contact to MRE2f DNA. The NOE signal between protein residue and DNA base can’t be well-defined, and the real MRE2f solution structure on Myb2x-bound form isn’t available yet. However, the Myb2x-MRE2f complex model was simulated using solved Myb2x protein structure and
    modeled B-form MRE2f.

    Abstract 5 摘要 5 Abstract 7 Chapter 1 – Introduction 9 Chapter 2 – Materials and methods 2.1 Construction of plasmids 15 2.2 Preparation of nucleic acid 15 2.3 Protein expression, purification, and preparation 16 2.4 Sample buffer condition 18 2.5 NMR spectrum for protein assignment 18 2.6 Protein solution structure calculation 20 2.7 NMR spectrum for nucleic acid assignment 21 2.8 Nucleic acid solution structure calculation 21 2.9 Circular dichroism experiment 22 Chapter 3 – Results 3.1 Characters of Myb2 and Myb2x protein 27 3.2 Myb2x protein interaction with MRE2r_m , MRE2f_m, and iron Fe2+ 29 3.3 Resonance assignment and structure calculation of Myb2x protein in free and complex form 32 3.4 Resonance assignment of MRE2f_m in free and complex form 40 3.5 Backbone nuclear overhauser effect of Myb2x protein in free and complex form 42 3.6 Interface in Myb2x-MRE2f_m complex 43 Chapter 4 – Discussion 83 Chapter 5 – Reference 101 Acknowledgement 105

    1.Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., Sarai, A., Ishii, S., Nishimura, Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 1994 79: 639-648
    2.Ong, S. J., Hsu, H. M., Liu, H. W., Chu, C. H., Tai, J. H. Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. J Biol Chem. 2007 Mar 2;282(9):6716-25.
    3.Ong SJ, Huang SC, Liu HW, Tai JH. Involvement of multiple DNA elements in iron-inducible transcription of the ap65-1 gene in the protozoan parasite Trichomonas vaginalis. Mol Microbiol.2004 Jun;52(6):1721-30.
    4.Jane, M. Carlton, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 2007 Jan 12;315(5809):207-12.
    5.Schumacher, M.A., Lau, A.O., Johnson, P.J. Structure basis of core promoter recognition in a primitive Eukaryote. Cell. 2003 Nov 14;115(4):413-24.
    6.Hirt, R.P., Noel, C.J., Sicheritz-Ponten, T., Tachezy, J., Fiori,P.L. Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol. 2007 Nov;23(11):540-7.
    7.Kucknoor, A.S., Mundodi, V., Alderete, J.F. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol. 2007 Nov;9(11):2586-97.
    8.Kucknoor, A.S., Mundodi, V., Alderete, J.F. Heterologous expression in Tritrichomonas foetus of functional Trichomonas vaginalis AP65 adhesin. BMC Mol Biol. 2005 Mar 4;6(1):5.
    9.Radha, P.K., Patel, P.K., Hosur, R.V. NMR structure of the extended Myb cognate sequence and modeling studies on specific DNA-Myb complexes. Biochemistry. 1998 Jul 14;37(28):9952-63.
    10.Tsai, C.D., Liu, H.W.,Tai,J.H. Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis. J Biol Chem. 2002 Feb 15;277(7):5153-62.
    11.Henzler-Wildman, K.A., et al. Intrinsic motions along an enzymatic reaction trajectory. Nature. 2007 Dec 6;450(7171):838-44.
    12.Golovanov, A.P., Hautbergue, G.M., Wilson, S.A., Lian, L.Y. A simple method for improving protein solubility and long-term stability. J Am Chem Soc. 2004 Jul 28;126(29):8933-9.
    13.Buurma, N.J., Haq,I. Advances in the analysis of isothermal titration calorimetry data for ligand-DNA interactions. Methods. 2007 Jun;42(2):162-72.
    14.Demarest, S.J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature. 2002 Jan 31;415(6871):549-53.
    15.Tahirov, T.H. et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell. 2001 Mar 9;104(5):755-67.
    16.Dotsch, V. Protein-DNA interaction. Methods in enzymology, 2001 Vol.339.
    17.Kim, S.G., Lin, L.J., Reid, B.R. Determination of nucleic acid backbone conformation by 1H NMR. Biochemisytry. 1992, 31, 3564-3574.
    18.Feigon, J. et al. 1H NMR spectroscopy of DNA. Methods in enzymology, 1992 Vol.211.
    19.Markley, J.L., et al. Recommendations for the presentation of NMR structures of proteins and nucleic acids. Eur J Biochem. 1998 Aug 15;256(1):1-15.
    20.Muchmore, D.C., et al. Expression and Nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods in enzymology, 1989 Vol.177.
    21.Stracke, R., M. Werber, and B. Weisshaar. The R2R3-MYB gene fanily in Arabidopsis thaliana. Curr. Opin. Plant Biol. 2001 4:447-456
    22.Weston, K. Myb proteins in life, death and differentiation. Curr. Opin. Genet. Dev. 1998 8:76-81
    23.BMRB database, http://www.bmrb.wisc.edu/
    24.CARA software, http://www.nmr.ch/
    25.CYANA software, http://www.las.jp/prod/cyana/eg/
    26.RCSB database, http://www.rcsb.org/pdb/home/home.do/
    27.Sparky software, http://www.cgl.ucsf.edu/home/sparky/
    28.TOLOS software, http://spin.niddk.nih.gov/NMRPipe/talos/
    29.Accelrys Discover Studio software, http://accelrys.com/

    無法下載圖示 本全文未授權公開
    QR CODE