簡易檢索 / 詳目顯示

研究生: 簡旭麟
Chien, Hsu-Lin
論文名稱: On Hankel Determinants for Dyck Paths with Peaks Avoiding Multiple Classes of Heights
On Hankel Determinants for Dyck Paths with Peaks Avoiding Multiple Classes of Heights
指導教授: 游森棚
Eu, Sen-Peng
口試委員: 徐祥峻
Hsu, Hsiang-Chun
鄭硯仁
口試日期: 2021/06/11
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 44
英文關鍵詞: Peak avoiding, Dyck path, Hankel determinant, Periodic sequence, Gessel-Viennot-Lindström theorem
研究方法: 主題分析數據分析相關文獻結果分析
DOI URL: http://doi.org/10.6345/NTNU202100725
論文種類: 學術論文
相關次數: 點閱:89下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定一個 $[m]$ 的子集合 $V$,我們可以定義 peak 的高度在模 $m$ 下不落在 $V$ 裡面的 Dyck path,將長度為 $r$ 的路徑數定義為數列的第 $r$ 項。對任意的正整數 $n$,我們要計算此數列的 $n imes n$ 的 Hankel 行列式,而 Hankel 行列式的值也構成一個新的數列 $H(D^{(m,V)})$。本文的主要結果就是在特定的 $m$ 和 $V$ 之下,Hankel 行列式的值可以完全預測,並且在某些條件下會是週期數列,而且可以預測週期。也可以從可循環的條件構造新的循環條件。更詳細的說,我們的主要定理如下:

    我們的第一個主要定理(Theorem 2.3.4.)是當 $m$ 是偶數,且 $V$ 符合條件時,我們可以完全知道 $H(D^{(m,V)})$ 的每一項的值。

    第二個主要定理(Theorem 3.3.1.)刻劃了一類集合 $V$,使得當 $m$ 符合特定條件時,$H(D^{(m,V)})$ 會循環,且可以逐項算出其值。

    第三個主要定理(Theorem 3.3.3)我們可由上述刻劃的集合,構造出新的集合,使得當 $m$ 符合特定條件時,$H(D^{(m,V)})$ 也會循環。

    我們的主要研究方法為分析路徑生成函數 $D^{(m,V)}$,求出 Hankel 行列式的遞迴。
    本文相當於得到 Hankel 行列式循環的充分條件,但並非是必要條件。對於我們無法解決的情況,我們也在最後進行討論,並提出一些觀察到的結果與猜想。

    For $V subset [m]$, we define a sequence ${d_r^{(m,V)}}$ such that $d_r^{(m,V)}$ is the number of Dyck paths of length $r$ whose peaks avoiding $V$ modulo $m$ and we note that the Hankel determinants of ${d_r^{(m,V)}}$ forms another sequence $H(D^{(m,V)})$. The main results of this thesis are the following:

    (1) If $m$ is even, we can compute $H(D^{(m,V)})$ for all $V subset {kin[m] mbox{ } | mbox{ } kmbox{ is even}}$.

    (2) Under a suitable assumption on $V$, if $m geq max V$, then $H(D^{(m,V)})$ is periodic and its period can be computed directly.

    (3) We provide a method to construct avoiding sets $V$ satisfying the assumption in (2) from a given set $V$ which already satisfies the assumption in (2).

    Our approach is analysing the generating functions of $D^{(m,V)}$ to find a recurrence relation for $H(D^{(m,V)})$. For summary, we find sufficient conditions for $H(D^{(m,V)})$ being periodic; however they are not necessary. For those cases still unsolved, we provide partial results from observations and make a conjecture.

    1 Introduction and Preliminary 1 1.1 Hankel determinant of generating functions . . . . . . . . . 1 1.2 Dyck paths with restrictions on peaks . . . . . . . . . . . . . 3 1.3 Counting Hankel determinant . . . . . . . . . . . . . . . . . . 4 2 Reduction Rules 6 2.1 Some specific case . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Reduction rules for H_n(D^{(m,V)}) . . . . . . . . . . . . . . . . . 12 2.3 Main results I . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Periodicity and Periods 20 3.1 Periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Primitive sequence . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Main results II . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Avoiding set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 On Continued fraction approach 30 4.1 super d-fraction . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 J- and H-fraction . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Concluding remarks and Problems 34 5.1 Nonperiodic cases . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Some problems . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 All data with m leq 6 . . . . . . . . . . . . . . . . . . . . . . . . 36 Bibliography 43

    J.-P. Allouche, J. Peyriere, Z.-X. Wen, and Z.-Y. Wen, Hankel determinants of the Thue-Morse sequence. Ann. Inst. Fourier(Grenoble), 48:1-27, 1998.

    Y. Bugeaud, G.-N. Han, A Combinatorial Proof of the Non-Vanishing of Hankel Determinants of the Thue-Morse Sequence, Electron. J. Combin. 21 Issue 3 (2014) P3.26.

    Y. Bugeaud, G.-N. Han, Z.-Y. Wen, J.-Y. Yao. Hankel Determinants, Padé Approximations, and Irrationality Exponents. International Mathematics Research Notices, 2016 (5), pp.1467-1496.

    R.A. Brualdi, S. Kirkland, Aztec diamonds and digraphs and Hankel determinants of Schröder numbers, J. Combin. Theory Ser. B 94 (2005) 334--351.

    S.-P. Eu, T.-S. Fu, A simple proof of the Aztec diamond theorem, Electronic J. Combin. 12 (2005), R18.

    S.-P. Eu, S.-C. Liu, Y.-N. Yeh, Dyck paths with peaks avoiding or restricted to a given set, Stud. Appl. Math. 111 (2003) 453--465.

    I.M. Gessel, G.X. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (3) (1985) 300--321.

    Y.-J. Guo, Z.-X. Wen, and W. Wu, On the irrationality exponent of the regular paperfolding numbers, Linear Algebra and its Applications. 446(2014)237-264

    I.M. Gessel, G. Xin, The generating function of ternary trees and continued fractions, Electron. J. Combin. 13 (2006) R53.

    G.-N. Han, Hankel continued fraction and its applications, Adv. Math. 303 (2016) 295--321.

    G.-N. Han, Hankel continued fractions and Hankel determinants of the Euler numbers, Trans. Amer. Math. Soc., 2019+.

    C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra Appl. 411 (2005) 68--166.

    M.E. Mays, J. Wojciechowski, A determinant property of Catalan numbers, Discrete Math. 211 (2000) 125--134.

    R. A. Sulanke, G. Xin, Hankel determinants for some common lattice paths, Adv. Appl. Math. 40 (2008) 149-67.

    G. Viennot, Une Théorie Combinatoire Des Polynômes Orthogonaux Généraux, Lecture Notes, Université du Québec à Montréal, Québec, 1983.

    下載圖示
    QR CODE