研究生: |
蔡明原 |
---|---|
論文名稱: |
PbTe、Pb0.78Sn0.22Te與Ge0.5Pb0.25Sn0.25Te的熱電物性研究 Thermoelectricity of PbTe, Pb0.78Sn0.22Te, and Ge0.5Pb0.25Sn0.25Te |
指導教授: |
陳鴻宜
Chen, Hong-Yi 陳洋元 Chen, Yang-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 熱電優質係數 |
英文關鍵詞: | figure of merit (ZT) |
論文種類: | 學術論文 |
相關次數: | 點閱:118 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用晶體熔融淬火和火花電漿燒結法(SPS)製備PbTe的熱電材料,PbTe的熱電優質係數(ZT)約0.25。我們希望藉Sn、Ge取代部分Pb合成新的熱電材料Pb0.78Sn0.22Te及Ge0.5Pb0.25Sn0.25Te,來提高其熱電優質係數。以X光繞射儀(XRD)和X光螢光分析儀(XRF)來鑑定晶體結構及材料中各元素成份比例,以熱電分析儀器測量其熱電性質,如席貝克係數、電阻率、熱傳導係數與溫度(300-600 K)的關係。其中的熱傳導係數由熱擴散係數、比熱、密度三者相乘得來。實驗結果顯示Sn、Ge取代部分Pb確能提高其熱電優質係數達~0.35。
The figure of merit (ZT) of thermoelectric material PbTe is about 0.25. In order to study the doping effect on the ZT, the alloys of Pb0.78Sn0.22Te and Ge0.5Pb0.25Sn0.25Te were formed from PbTe through partially substituting Pb by Sn and Ge. All samples were prepared by melting and followed by water quench. These samples were powdered by grinding and then pressed by Spark Plasma Sintering (SPS) to further reduce their thermal conductivities. X-ray diffraction (XRD) and X-ray fluorescence (XRF) were employed to examine their crystal structures and composition ratios. The temperature dependence of the Seebeck coefficient, resistivity and thermal conductivity (obtained by the product of specific heat, mass density and diffusivity) of Pb0.78Sn0.22Te and Ge0.5Pb0.25Sn0.25Te showed that the ZT was slightly enhanced from 0.25 to 0.35 by the Pb substitution and processes of Spark Plasma Sintering.
1. 陳志挺,Bi2Te3塊材與奈米微粒之熱電效率、熱傳導率與比熱之物性研究,2003。
2. 簡宇杰,碲化鉍奈米複合材料之熱電特性,2010。
3. 彭志豪,碲鉍化鉛(PbTe)n(Bi2Te3)m晶體之電熱特性分析,2002。
4. M. Orihashi, Y. Noda, L.D. Chen, T. Goto, T. Hirai,“Effect of tin content on thermoelectric properties of p-type
lead tin telluride”, Journal of Physics and Chemistry of Solids 61 (2000) 919–923。
5. Yaniv Gelbstein, Boaz Dado, Ohad Ben-Yehuda, Yatir Sadia, Zinovy Dashevsky, and Moshe P. Dariel,”High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type Gex(SnyPb1-y)1-xTe Alloys Following a Spinodal Decomposition Reaction”, Chem. Mater. 2010, 22, 1054–1058。
6. Y. Gelbstein_, Z. Dashevsky, M.P. Dariel,”Powder metallurgical processing of functionally graded
p-Pb1_xSnxTe materials for thermoelectric applications”, Physica B 391 (2007) 256–265。
7. 蘇正芳,利用垂直式Bridgman法成長錫鉍化碲晶體及熱電特性分析,2002。
8. 王尹男,奈米碲化鉛之水熱法合成及其火花電漿燒結體性質研究,2009。
9. 柯賢文,熱電轉換及其應用,科技發展政策報導 2007 年9 月第5 期 51-65 頁。
10. 劉建億,碲化錫鍺晶體顯微分析與其熱電性質分析,2008。
11. CHIA-HUNG KUO, MING-SHAN JENG, JIE-REN KU, SHIH-KUO WU,
YA-WEN CHOU, and CHII-SHYANG HWANG1,”p-Type PbTe Thermoelectric Bulk Materials with Nanograins Fabricated by Attrition Milling and Spark Plasma Sintering”,Journal of ELECTRONIC MATERIALS, Vol. 38, No. 9, 2009。
12. Aure´lie Gue´guen, Pierre F. P. Poudeu, Chang-Peng Li, Steven Moses, Ctirad Uher, Jiaqing He, Vinayak Dravid, Konstantinos M. Paraskevopoulos, and Mercouri G. Kanatzidis, “Thermoelectric Properties and Nanostructuring in the p-Type
Materials NaPb18-xSnxMTe20 (M = Sb, Bi)”, Chem. Mater. 2009, 21, 1683–1694。
13. 朱旭山,熱電材料與元件之發展與應用,94 年4 月 220 期 工業材料雜誌。
14. 彭志豪,碲鉍化鉛(PbTe)n(Bi2Te3)m晶體之電熱特性分析,2002。
15. 鄭時任,中低溫梯度接合型熱電材料之研究,2009。