研究生: |
王裕強 Yu-Chiang Wang |
---|---|
論文名稱: |
精密網版印刷應用於熱電材料膜之成形技術開發 Formation of thermoeletric material film using precision screen-printing technology |
指導教授: |
楊啟榮
Yang, Chii-Rong 廖信 Liao, Shin |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 147 |
中文關鍵詞: | 網版印刷 、熱電材料 、致冷元件 、燒結 |
英文關鍵詞: | screen-printing, thermoelectric material, cooler, sintering |
論文種類: | 學術論文 |
相關次數: | 點閱:217 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代科技日新月異,電子元件在有限空間中以最密集、最有效率的方式排列,且在效能導向之下,元件的工作頻率提升,溫度也隨之升高,因此冷卻成為不可忽視的課題。微熱電致冷元件具有體積小、無污染、控溫精確等優點,符合目前產業趨勢。然而,目前熱電致冷元件製作方式,皆以傳統技術如布里茲曼法、熱壓成形法,或微加工技術如濺鍍/蒸鍍法、MOCVD法等為主。若應用網版印刷技術製作熱電致冷元件,將可以簡化上述製作法的繁雜程序,也減少製造成本與時間,有利於產業應用之普及化。
本研究主要分為三大項目:(1) 針對網版印刷技術之成型結構的解析度與品質加以測試評估;(2) 以網版印刷技術印製熱電材料膜於矽基板上,對其熱電性質與表面形貌、成分等進行特性評估;(3) 應用網版印刷技術,進行熱電元件製程的初步測試與探討。實驗結果顯示,本實驗以網版印刷技術,使用黏度為50 Pas的UV感光型GN-52-479油墨,進行最佳線寬範圍之印刷測試,圖案最小線寬可達40 m,而線寬50至100 m以上有最佳的印刷品質呈現。此外,將黏結劑與熱電材料粉末,以20 wt.%與80 wt.%比例混合調配成熱電漿料,並印製成18 mm 18 mm面積的熱電膜,Bi2Te3與Sb2Te3分別以560 C與585 C,在氫與氬的混合氣氛下,進行四小時燒結,可於燒結過程中還原氧化的熱電膜。燒結後可分別測得席貝克係數與電阻值,Bi2Te3為-57.06 V/K與4.4010-5 m,而Sb2Te3為64.70 V/K與7.3310-5 m。網印技術應用於熱電元件製程進行初步測試,重複三次熱電結構之堆疊印刷程序,可使75與100 m線寬的堆疊結構,達到20 m以上的厚度。未來將繼續熱電元件後續製程之測試與評估,期望不久的將來實現低成本與方便量產為訴求的熱電元件製造技術。
In nowadays, electronic components are tended to have high density and high work-frequency, and property of high temperature appears. Therefore, cooling of components is an important consideration. Micro-thermoelectric cooler is suit to application of industry and has advantages as followed: small volume, no pollution, and exact temperature control etc. At present, thermoelectric cooler are fabricated by complicated traditional technologies such as Bridgman method, hot pressing method, or micro fabrication such as sputter, hot evaporation, or MOCVD (metal-organic chemical vapor deposition). Screen-printing technology can fabricate micro thermoelectric components with simple process, lower cost and less fabrication hours, and can be popularized in industry.
This research has three points as followed: (1) Estimation of DPI (dots per inch) and quality of structure formation by screen-printing technology. (2) To fabricate thermoelectric film on silicon substrate by screen-printing technology, and to estimate morphology, composition, and thermoelectric characteristic. (3) To experiment and discuss process of thermoelectric component fabricated by screen-printing technology.
In the research, we use UV sensitive ink (GN-52-479) with viscosity of 50 Pas to test the best range of width. The results show that the smallest width of pattern is 40 m, and pattern with 50-100 m width has better screen-printing quality. Besides, we mix 1:4 by weight of binder and thermoelectric powder to be thermoelectric ink and print 18×18 mm2 thermoelectric film. After 4 hours sintering of Bi2Te3 (560 ºC) and Sb2Te3 (585 ºC), Seeback coefficient and resistivity of Bi2Te3 are -57.06 V/K and 4.40×10-5 m, and values of Sb2Te3 are 64.70 V/K and 7.33×10-5 m. Using the technology to print thermoelectric structure three times can get thickness more than 20 m with widths of 75 m and 100 m.
1.蔡永明, 網版製版印刷實務, 貝星貿易股份有限公司,(1997), P.1。
2.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章,
2003, pp. 141-319.
3.S. Wu, J. Mai, Y. C. Tai, C. M. Ho, “Micro heat exchanger using MEMS impinging jets”, IEEE, 1999, pp. 171-176.
4.C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, C. C. Hsieh, “MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics.”, Experimental thermal and fluid science, 2001, pp. 231-242.
5.“Thermoelectrics handbook micro to nano”, D. M. Rowe, (2006)
6.Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, J. L. Schanen, “Thermal analysis of thermal spreaders used in power electronics cooling.”, IEEE, 2002, pp. 216-221.
7.J. Kim, E. Golliher, “Steady state model of a micro loop heat pipe.”, IEEE, 2002, pp. 137-144.
8.http://electronics-cooling.com/
9.R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, D. Wolf, “Testing of controller for a hybrid capillary pumped loop thermal control system.”, IEEE, 1989, pp. 69-74.
10.D. J. Yao, “In-plane MEMS thermoelectric microcooler”, Ph. D. dissertation of UCLA, USA, 2001.
11.Microsoft, http://www.microsoft.com.
12.W. Ehrfeld, V. Hessel, H. Löwe, C Schulz, L. Weber, “Materials of LIGA technology”, Microsystem Technologies, Vol. 5, No. 3, 1999, pp.105-112.
13.G. J. Snyder, J. R. Lim, C. K. Huang, J. P. Fleurial, “Thermoelectric microdevice fabricated by MEMS-like electrochemical process”, Nature Materials, Vol. 2, 2003, pp.528-532.
14.“Handbook of thermoelectrics”, Alexander Borshchevsky, 1995, pp.83-97.
15. O. Yamashita, S. Tomiyoshi, K. Makita, “Bismuth telluride compounds with high thermoelectric figures of merit”, Journal of Applied Physics, Vol. 93, Issue 1, January 1, 2003, pp. 368-374.
16. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, C. W. Hwang, “Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr”, Journal of Materials Science Vol. 33, 1998, pp. 5595-5600.
17. http://people.deas.harvard.edu/
18. L. D. Ivanova,Y. V. Granatkina,N. V. Polikarpova, E. I. Smirnova, “Selenium-doped Sb2Te3-Bi2Te3 crystals”, Inorganic Materials Vol. 33, 1997, pp. 558-561
19. L. D. Ivanova,Y. V. Granatkina,N. V. Polikarpova, Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system”, Inorganic Materials, Vol. 31, 1995, pp.678-681.
20. L. D. Ivanova, S. A. Brovikova, H. Sussmann, P. Reinshaus, “Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 singal-crystals”, Inorganic Materials, Vol. 31, 1995, pp. 682-686.
21. http://www.dynacer.com/
22. D. B. Hyun, J. S. Hwang, J. D. Shim, T. S. Oh, “Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method”, Journal of Materials Science Vol. 36, Number 5, 2001, pp. 1285-1291.
23. B. Wölfing, C. Kloc1, J. Teubner, E. Bucher, “High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity”, Physical Review Letters, Vol, 86, Issue 19, 2001, pp. 4350-4353.
24. http://www.hardwaresource.com
25. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature Vol. 413, 2001, pp. 597-602.
26. J. Seo, K. Park, D. Lee, C. Lee, “Microstructure and Thermoelectric Properties of P-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion”, Vol. 38, Issue 3, 1998, pp. 477-484.
27. L. M. Goncalves, C. Couto, P. Alpuim , D.M. Rowe, J. H. Correia, “Thermoelectric microstructures of Bi2Te3/Sb2Te3 for a self-calibrated micro-pyrometer”, Sensors and Actuators A 130-131, 2006, pp. 346-351.
28. L. W. da Silva, M. Kaviany, C. Uherc, “Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems”, Journal of Applied Physics, Vol. 97, 2005, pp. 114903-1.
29. H. Böttner, J. Nurnus, A. Gavrikov, G. Kühner, M. Jägle, C. Künzel, D. Eberhard, G. Plescher, A. Schubert, K. H. Schlereth, “ New thermoelectric components using microsystem technologies”, Journal of Microeletromechanical Systems, Vol. 13, No. 3, 2004, pp. 414-420.
30. D. H. Kim, E. Byon, G. H. Lee, S. ChoEffect, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering”, Thin Solid Films Vol. 510, 2006, pp. 148-153.
31. A. Boulouza, S. Chakrabortyb, A. Giani, F. P. Delannoy, A. Boyer, “Transport properties of V–VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices”, Journal of Applied Physics Vol. 89, No. 9, 2001, pp. 5009-5014.
32. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, A. Boyer, “Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD”, Materials Science and Engineering B64, 1999, pp. 19-24.
33. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, A. Boyer, “MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor”, Thin Solid Films 315, 1998, pp. 99–103.
34. M. Takahashi, Y. Katou, K. Nagata, S. Furuta, “The composition and conductivity of electrodeposited Bi-Te alloy films”, Thin Solid Film, vol. 240, 1994, pp. 70-72.
35. M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacya, “ Insights into the electrodeposition of Bi2Te3”, Journal of The Electrochemical Society, Vol. 149, No. 11, 2002, pp.546-554.
36. J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, M. Nicolet, “ Development Of thick-Film thermoelectric microcoolers using electrochemical deposition”, Materials Research Society Symposium Proceedings, Vol. 545, 1998, pp. 493.
37. J. P. Fleurial, G. J. Snyder, J. A. Herman, P.H. Giauque, W.M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, M. A. Nicolet, “Thik-film thermoelectric microdvices”, 18th International Conference of Thermoelectrics, 1999, pp. 294-295.
38. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, J. P. Fleurial, “Thermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL)”, 21th International Conference of Thermoelectrics, 2002.
39. G. Leimkűhler, I. Kerkamm, R. R. Koch, “ Electrodeposition of Antimony Telluride” , Journal of The Electrochemical Society, Vol. 149, 2002, pp. 474-478.
40. C. Wang, Q. Wang, L. Chen, X. Xu, Q. Yaoa, “Electrodeposition of Sb2Te3 films on Si(100) and Ag substrates”, Electrochemical and Solid Letters, Vol. 9, 2006, pp.147-149.
41. W. L. Wang, Y. Y. Wang, C. C. Wan, “Composition control of electrodeposited Bi–Te based on mass–transfer manipulation”, Journal of The Electrochemical Society, Vol. 153, 2006, pp.400-404.
42. S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, M. L. Blohm, “Kinetics and initial stages of bismuth telluride electrodeposition”, Journal of The Electrochemical Society, Vol. 153, 2006, pp.595-602.
43. P. Heo, K. Hagiwara, R. Ichino, M. Okidob, “Electrodeposition and Thermoelectric Characterization of Bi2Te3”, Journal of The Electrochemical Society, Vol. 153, 2006, pp.213-217.
44. S. Michel, N. Stein, M. Schneider, C. BOULANGER,J. M. Lecuire, “ Optimization of chemical and electrochemical parameters for the preparation of n-type Bi2Te2.7Se0.3 thin films by electrodeposition”, Journal of Applied Electrochemistry, Vol. 33, 2003, pp.23-27.
45. 陳俊杰, “薄膜製程與厚膜製程的差異”, 光頡科技, 線上資料: http://www.viking.com.tw/chi/sub/sub302.htm, 2005。
46. 許國強, “太陽光發電原理與應用”, 工業技術研究院材料所, (2003)。
47. S. Hirsch, S. Doerner, “Thick-film PZT transducers for siliconmicro machined sensor arrays”, IEEE Conference Proceeding, 2005, 30 Oct.-3 Nov: 4 pp.444-447.
48. J. Weber, K. Potje-Kamloth, “Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics”, Sensors and Actuators A, Vol. 132, 2006, pp.325-330.
49. B. G. Min, K. W. Jang, “Fabrication and characterization of Bi2Te3-Sb2Te3 based thermoelectric materials by powder-extrusion-sintering technique”, 16th International Conference on Thermoelectrics, 1997, pp.76-80.
50. K. Miyazaki, T, Iida, “Micro-fabrication of BizTe, by using.micro-jet”, 22nd International Conference on Thermoelectrics, 2003, pp.641-643.
51. C. H. Lim, K. T. Kim, “Effect of powder mixing on thermoelectric properties in Bi2Te3-based sintered compounds”, Intermetallics, Vol. 14, 2006, pp.1370-1374.