研究生: |
鄭俊茂 |
---|---|
論文名稱: |
氮化銦鎵量子井結構應用於太陽能電池及其特性研究 InGaN/GaN multiple quantum well solar cells grown on wet-etched patterned sapphire substrates |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 27 |
中文關鍵詞: | 太陽能電池 、氮化銦鎵 、圖案化藍寶石基板 |
英文關鍵詞: | solar cell, InGaN, patterned sapphire substrate(PSS) |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中將氮化銦鎵量子井磊晶成長於圖案化藍寶石基板上來提升太陽能電池轉換效率。與傳統的太陽能電池結構比較之下,差排缺陷(threading dislocation)密度可以從1.28×109 降低至3.62×108cm2,使得太陽能電池的短路電流(Isc)提升60%。此外,氮化銦鎵量子井太陽能電池磊晶於圖案化藍寶石基板與一般的藍寶石基板其開路電壓(Voc=2.05V)與填充因子(FF=51%)幾乎相同。我們歸納元件效能的提升主要是磊晶層結晶品質的改善,其減少量子井中非輻射複合中心對光致載子的侷限效應,最終提升光致載子傳輸至元件外部的整體效率。
This study demonstrated the enhanced conversion efficiency of an indium gallium nitride (InGaN) multiple quantum well (MQW) solar cell fabricated on a patterned sapphire substrate (PSS).Compared to conventional solar cells grown on a planar sapphire substrate, threading dislocation defects were found to be reduced from 1.28×109 to 3.62×108cm2, leading to an increase in short-circuit current density (JSC 1.09 mA/cm2) of approximately 60%. In addition, the open-circuit voltage and fill factor (VOC=2.05 V; FF = 51%) of the solar cells grown on PSS were nearly identical to those of conventional devices. The enhanced performance is primarily due to improvements in the crystalline quality of the epitaxial layers, reducing the trapping of photogenerated electrons and holes by nonradiative recombination centers in MQW, with a corresponding increase in the transport efficiency of the carriers outside the device.
[1] table available at http://en.wikipedia.org/wiki/Solar_cell. Originally generated by Sarah R. Kurtz, Lawrence L. Kazmerski et al. at National Renewable Energy Laboratory/National Center for Photovoltaics
[2] J.F. Geisz, Sarah Kurtz, M.W. Wanlass, J.S. Ward, A. Duda, D.J. Friedman, J.M. Olson, W.E. McMahon, T.E. Moriarty, and J.T. Kiehl, ”High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Applied Physics Letters, 91, (2007), pp. 023502
[3] J.F. Geisz, D.J. Friedman, J.S. Ward, A. Duda, W.J. Olavarria, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, and K.M. Jones “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions”, APPLIED PHYSICS LETTERS, 93, (2008), pp. 123505.
[4] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K.Mishra, Appl. Phys. Lett. 93, 143502 (2008).
[5] X. Cai, S. Zeng, and B. Zhang, Appl. Phys. Lett. 95, 173504 (2009)
[6] J. Shim. S. Jeon, Y. Jeong, and D. Lee, IEEE Electron Device Lett. 31,1140 (2010).
[7] X. Cai, S. Zeng, and B. Zhang, Appl. Phys. Lett. 95, 173504 (2009)
[8] J. Shim. S. Jeon, Y. Jeong, and D. Lee, IEEE Electron Device Lett. 31,1140 (2010).
[9] J. Sheu, C. Yang, S. Tu, K. Chang, M. Lee, W. Lai and L. Peng, IEEE,Electron Device Lett. 30, 225 (2009).
[10] K. Chen, W. Huang, T. Hsieh, C. Hsieh, and C. Lin, Opt. Express 18,23406 (2010).
[11] Donald A. Neamen , Electronic circuit analysis and design
[12] T. Soga (editor),Nanostructured Materials for Solar Energy Conversion
[13] 翁敏航,太陽能電池-原力、元件、材料、製程與檢測技術
[14] A. Hayes, J.F.Welden, E.Ostun, and R.J.Gambino,Data Storage43 (March/April) (1995)
[15] X. Dongzhuy, Z. Dezhangy, P. Haochangy, X. Hongjiey, and R. Zongxin, Appl. Phys. 31 (1998)
[16] Y. J. Sung, H.S. Kim, Y.H. Lee, J.W Lee, S.H. Chae, Y.J. Park, G.Y. Yeom, Materials Science and Engineering, B82, 50–52 (2001)
[17] Z. Feng, Y. Qi, Z. Lu, K. Lau, J. Cryst. Growth 272, 327 (2004).
[18] H. Cho, J. Lee, K. Kim, G. Yang, J. Song, and P. Yu, J. Appl. Phys. 89,2617 (2001).
[19] D.Stocker,E.Schubert,andJ.Redwing,Appl.Phys.Lett.73, 2654(1998).
[20] S. Lester, F. Ponce, M. Craford, and D. Steigerwald Appl. Phys. Lett. 66,1249 (1995).
[21] S. John, C. Soukoulis, M. H. Cohen and E. N. Economou, Phys. Rev. Lett.57, 1777 (1986).
[22] I. Pryce, D. Koleske, A. Fischer and H. Atwater, Appl. Phys. Lett. 96,153501 (2010).
[23] P. Wu¨rfel, Physics of Solar Cells, From Principles to New Concepts (Wiley-VCH, Weinheim, 2005).