研究生: |
王瑞禧 Wang, Ruei-Si |
---|---|
論文名稱: |
單層六方氮化硼中穿隧摩擦電荷動態之研究 Dynamics of Tunneling Triboelectric Charges in Supported Single-layered Hexagonal Boron Nitride |
指導教授: |
邱顯智
Chiu, Hsiang-Chih |
口試委員: |
邱顯智
Chiu, Hsiang-Chih 莊程豪 Chuang, Cheng-Hao 駱芳鈺 Lo, Fang-Yuh |
口試日期: | 2024/06/25 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 六方氮化硼 、原子力顯微鏡 、穿隧摩擦起電 、超薄絕緣層 |
英文關鍵詞: | hexagonal boron nitride, atomic force microscope, tunneling triboelectric effect, ultra-thin insulating layer |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401630 |
論文種類: | 學術論文 |
相關次數: | 點閱:86 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究工作中,我們探討了單層六方氮化硼在帶電摩擦過程中,穿隧摩擦電荷注入、儲存與耗散現象。我們使用原子力顯微鏡(atomic force microscope, AFM)操控帶有偏壓的導電式探針在單層六方氮化硼表面進行帶電摩擦,並在摩擦結束後立刻使用克爾文探針顯微鏡(Kelvin probe force microscope, KPFM)量測摩擦區域表面電位的變化。我們發現在帶電摩擦的過程中,導電式探針上的電荷會透過穿隧摩擦起電效應(tunneling triboelectric effect, TTE)由六方氮化硼的結構缺陷穿隧並儲存在下方的空氣層與二氧化矽基板中,造成摩擦區域的表面電位發生變化,而變化的程度可以透過摩擦時施加在探針上的偏壓調控。我們還發現,摩擦區域的表面電位變化會隨著量測KPFM的次數增加而下降,這表示量測KPFM的過程中儲存在摩擦區域的穿隧電荷會反向穿隧被導電探針帶走,導致穿隧電荷逐漸消散。此外,穿隧電荷隨量測次數的消散動態行為會符合自然指數衰退的模型。最後,我們使用氬電漿轟擊以增加六方氮化硼的結構缺陷,並發現帶有較多缺陷的樣品在摩擦過後,穿隧電荷的消散會比原始樣品更快。我們的研究揭示了單層六方氮化硼的帶電摩擦特性,使我們更深入了解其作為元件電極保護層的可能性。
In this study, we used atomic force microscope (AFM) to manipulate a biased conductive AFM (c-AFM) probe to rub against supported monolayer h-BN. Immediately after rubbing, we measured the surface potential of the rubbed area on h-BN using Kelvin probe force microscope (KPFM). We found that during the rubbing process, charges from the cAFM probe can tunnel through structural defects in h-BN via the tunneling triboelectric effect (TTE) and will be stored in the underlying air gap, leading to changes in the surface potential of rubbed region on h-BN. The variations in surface potential can be controlled by adjusting the electric bias applied to the c-AFM probe during rubbing. We found that the surface potential changes in the rubbed area decreased with the number of repetitive KPFM measurements. This suggests that the TTE charges underneath h-BN can dissipate through reverse tunneling via the c-AFM probe, leading to gradual charge dissipation with repetitive KPFM measurements. The dissipation dynamics follow a natural exponential decay model. Finally, we increased the structural defects in h-BN by argon plasma treatment and found that the dissipation of TTE charges in the defective h-BN samples was faster than that in the pristine ones. Our results reveals the properties of monolayer h-BN under sliding electric contact, enhancing our understanding of its functionality and possibility for applications as surface protective layers.
1. Roy, S., et al., Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv Mater, 2021. 33(44): p. e2101589.
2. Shi, G., et al., Boron nitride-graphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett, 2014. 14(4): p. 1739-44.
3. Lee, G.-H., et al., Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 2013. 7(9): p. 7931-7936.
4. Britnell, L., et al., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012. 335(6071): p. 947-950.
5. Wang, J., et al., High Mobility MoS(2) Transistor with Low Schottky Barrier Contact by Using Atomic Thick h-BN as a Tunneling Layer. Adv Mater, 2016. 28(37): p. 8302-8308.
6. Mahvash, F., et al., Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci Rep, 2017. 7: p. 42139.
7. Scardamaglia, M., et al., Comparative study of copper oxidation protection with graphene and hexagonal boron nitride. Carbon, 2021. 171: p. 610-617.
8. Kim, S., et al., Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics. Nat Commun, 2017. 8: p. 15891.
9. Liu, Y.-J., et al., Effect of structural defects on the physiochemical properties of supportive single-layer graphene in a sliding electrical contact interface under ambient conditions. Applied Surface Science, 2023. 637: p. 157992.
10. Huang, S.-D., et al., Variations in the Effective Work Function of Graphene in a Sliding Electrical Contact Interface under Ambient Conditions. ACS Applied Materials & Interfaces, 2022. 14(23): p. 27328-27338.
11. Zhao, X., et al., Dynamic behavior of tunneling triboelectric charges in two-dimensional materials. International Journal of Minerals, Metallurgy and Materials, 2023. 30(9): p. 1801-1808.
12. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Phys Rev Lett, 1986. 56(9): p. 930-933.
13. Butt, H.-J., B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005. 59(1-6): p. 1-152.
14. Hutter, J.L. and J. Bechhoefer, Calibration of atomic-force microscope tips. Review of Scientific Instruments, 1993. 64(7): p. 1868-1873.
15. Sader, J.E., J.W.M. Chon, and P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments, 1999. 70(10): p. 3967-3969.
16. Sader, J.E., et al., Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 1995. 66(7): p. 3789-3798.
17. Sader, J.E., et al., Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Rev Sci Instrum, 2012. 83(10): p. 103705.
18. Zisman, W.A., A New Method of Measuring Contact Potential Differences in Metals. Review of Scientific Instruments, 1932. 3(7): p. 367-370.
19. Weaver, J.M.R. and D.W. Abraham, High resolution atomic force microscopy potentiometry. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991. 9(3): p. 1559-1561.
20. Huang, W.-Y., et al., Growth Mechanism of High-Quality hBN Monolayers on Cu through Chemical Vapor Deposition with Inductively Coupled Plasma. The Journal of Physical Chemistry C, 2022. 126(50): p. 21287-21296.
21. 黃威瑀, 「六方氮化硼透過化學氣相沉積法合成在銅上的成核與生長動力學」。碩士論文,國立中央大學物理學系,2022。https://hdl.handle.net/11296/jqb8x3。.
22. de la Rosa, C.J.L., et al., Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 2013. 102(2): p. 022101.
23. Van Ngoc, H., et al., PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Scientific Reports, 2016. 6(1): p. 33096.
24. Wang, Y., et al., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011. 5(12): p. 9927-9933.
25. Leong, W.S., et al., Paraffin-enabled graphene transfer. Nature Communications, 2019. 10(1): p. 867.
26. Lin, Y.-C., et al., Graphene Annealing: How Clean Can It Be? Nano Letters, 2012. 12(1): p. 414-419.
27. Chen, V., et al., Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials, 2021. 8(4): p. 045024.
28. Behura, S., et al., Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates. ACS Nano, 2017. 11(5): p. 4985-4994.
29. Na, Y.S., et al., Modulation of optical and electrical properties in hexagonal boron nitride by defects induced via oxygen plasma treatment. 2D Materials, 2021. 8(4): p. 045041.
30. Kim, S., et al., Effects of plasma treatment on surface properties of ultrathin layered MoS2. 2D Materials, 2016. 3(3): p. 035002.
31. Kang, S., et al., Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS2. ACS Applied Materials & Interfaces, 2021. 13(1): p. 1245-1252.
32. Gorbachev, R.V., et al., Hunting for monolayer boron nitride: optical and Raman signatures. Small, 2011. 7(4): p. 465-8.
33. Dunaevskiy, M.S., et al., Kelvin probe force gradient microscopy of charge dissipation in nano thin dielectric layers. Journal of Applied Physics, 2011. 110(8): p. 084304.
34. Lee, G.-H., et al., Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Applied Physics Letters, 2011. 99(24): p. 243114.
35. Lowell, J., Tunnelling between metals and insulators and its role in contact electrification. Journal of Physics D: Applied Physics, 1979. 12(9): p. 1541.