簡易檢索 / 詳目顯示

研究生: 王祥安
Wang, Siang-An
論文名稱: 在二維材料系統和層間交換耦合系統中使用渦旋光改變其磁各向異性
Magnetic anisotropy modification by twisted light in the systems of 2D-materials and interlayer exchanged coupling heterojunction
指導教授: 藍彥文
Lan, Yann-Wen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 60
中文關鍵詞: 渦旋光磁各向異性
英文關鍵詞: Twisted light, Magnetic anisotropy
DOI URL: http://doi.org/10.6345/NTNU202001125
論文種類: 學術論文
相關次數: 點閱:128下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將拉蓋爾-高斯(Laguerre-Gaussian, LG)光束照射在磁性材料上,藉以探討帶有軌道角動量的渦旋光應用於「磁-光記憶元件」的可行性。首先,選用層間交換耦合系統的原因是因為其上下層磁性材料之磁矩,可以藉由中間過渡金屬層而互相耦合成平行、反平行或垂直而有非揮發性的記憶特性,因此有利於用來觀察記錄光對於材料的影響。另一方面,LG光束的電場、磁場與偏振光不同的是其在空間中分布不均勻的特性,在光照區域裡被預期有環形電流與衍生之局部性磁場,具有相當大的潛力能如同光的自旋角動量般,運用於光儲存元件。實驗結果顯示,渦旋光確實可以偏轉層間交換耦合系統的磁易軸,偏轉的方向也與光的軌道角動量方向有關連,本文也針對其偏轉的現象提出三種可能的機制。這項觀察亦可推廣至「鐵磁材料-二維材料異質性介面」,由於鈷和單層二硫化鉬之間因為「鈷-硫」鍵結有自旋軌道耦合,使得鈷和二硫化鉬結合時會交互耦合。其介面的強耦合也可以使用來記錄磁性的改變。經實驗發現,照射LG光束後磁各向異性也會隨之變化。間接證明了磁性材料與二維材料的結合也可以用來當作一種新的磁儲存的結構。

    In this study, we introduce the Laguerre-Gaussian (LG) beam on magnetic materials to study the possibility of applying orbital angular momentum (OAM) of light to the "magneto-optical memory devices". For an interlayer exchanged coupling (IEC) system, the magnetizations of the upper and bottom magnetic materials layer coupled to each other with parallel, antiparallel, or perpendicular alignments through the intermediate transition metal layer. Because of its non-volatile memory properties, the IEC system is beneficial for observing the consequence of the twisted light illumination. On the other hand, the electric field and magnetic field of an LG beam have the helical vortex property, so we expect a ring current and induced local magnetic field appearing when the LG beam illuminates on sample's surface. The experimental results show that light with OAM can indeed deflect the magnetic easy axis of the IEC system, and the direction of the rotation is related to the sign of the topological charge. In this thesis, I propose three possible mechanisms for explaining this phenomenon. This observation can also be extended to the "ferromagnetic material-two-dimensional material heterogeneous interface". According to the previous publication, Co and MoS2 are coupled together through the "Co-S" bonding. It is found that the magnetic anisotropy will also be changed after the LG beam irradiation. This indicates the combination of magnetic materials and two-dimensional TMDCs materials has the potential to be a new type of magnetic storage material.

    章節 1 緒論 1 章節 2 實驗原理與裝置 4 2-1 樣品製備 4 2-1-1 Co/Ru/Co系統 4 2-1-2 MoS2製程 4 2-1-3 Co/MoS2系統 5 2-2 層間交換耦合(Interlayer Exchanged Coupling) 6 2-3 拉蓋爾-高斯(Laguerre-Gaussian)光束 8 2-4 磁光柯爾效應(Magneto-Optical Kerr Effect, MOKE) 12 2-5 磁性材料 15 2-5-1 鐵磁性材料 15 2-5-2 磁各向異性(Magnetic Anisotropy, MA) 17 2-6 二維材料 20 2-7 儀器設備 22 2-7-1 空間光調製器(Spatial Light Modulator, SLM) 22 2-7-2 磁光柯爾顯微鏡(Magneto-Optical Kerr Microscopy) 24 2-7-3 拉曼光譜儀(Raman Spectrometer) 28 2-7-4 電子束磊晶系統 29 章節 3 實驗結果—層間交換耦合系統 30 3-1 樣品介紹 30 3-2 實驗程序 32 3-3 渦旋光改變材料鐵磁特性 34 3-4 渦旋光改變材料磁各向異性 36 3-5渦旋光調控磁各向異性實驗 39 3-6無層間交換耦合情況探討 41 章節 4 實驗結果—鐵磁性材料與二維材料之異質界面 42 4-1 樣品介紹 42 4-2 實驗程序與數據分析 46 章節 5 結果機制探討 49 5-1 渦旋光致環電流產生垂直磁場 49 5-2渦旋光環電流引起自旋霍爾效應 51 5-3 渦旋光本身的磁場梯度 53 章節 6 結論與未來展望 55 6-1 結論 55 6-2未來展望 56 參照文獻 57

    1 Dennard, R. H. et al. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 256-268, doi:10.1109/JSSC.1974.1050511 (1974).
    2 Williams, F. C. & Kilburn, T. Electronic Digital Computers. Nature 162, 487-487, doi:10.1038/162487a0 (1948).
    3 Agarwal, V., Hrishikesh, M. S., Keckler, S. W. & Burger, D. in Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201). 248-259.
    4 Young, R. How Computers Work: Processor and Main Memory (2002)
    5 Jacob, B., Ng, S. & Wang, D. Memory Systems: Cache, DRAM, Disk. (Morgan Kaufmann Publishers Inc., 2007).
    6 Halderman, J. et al. Lest We Remember: Cold Boot Attacks on Encryption Keys. (2008).
    7 Maxfield, C. & Waddell, P. Bebop to the Boolean Boogie: An Unconventional Guide to Electronics Fundamentals, Components and Processes. (Butterworth-Heinemann, 2002).
    8 Bhatti, S. et al. Spintronics based random access memory: a review. Materials Today 20, 530-548, doi:https://doi.org/10.1016/j.mattod.2017.07.007 (2017).
    9 Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B 54, 9353-9358, doi:10.1103/PhysRevB.54.9353 (1996).
    10 Slonczewski, J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials 159, L1-L7, doi:https://doi.org/10.1016/0304-8853(96)00062-5 (1996).
    11 Heindl, R., Rippard, W. H., Russek, S. E. & Pufall, M. R. Time-domain analysis of spin-torque induced switching paths in nanoscale CoFeB/MgO/CoFeB magnetic tunnel junction devices. Journal of Applied Physics 116, doi:10.1063/1.4905023 (2014).
    12 Diao, Z. et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. Journal of Physics: Condensed Matter 19, 165209, doi:10.1088/0953-8984/19/16/165209 (2007).
    13 Evarts, E. R., Heindl, R., Rippard, W. H. & Pufall, M. R. Correlation of anomalous write error rates and ferromagnetic resonance spectrum in spin-transfer-torque-magnetic-random-access-memory devices containing in-plane free layers. Applied Physics Letters 104, doi:10.1063/1.4879847 (2014).
    14 Honjo, H. et al. in 2019 IEEE International Electron Devices Meeting (IEDM). 28.25.21-28.25.24.
    15 Zeinali, B., Madsen, J. K., Raghavan, P. & Moradi, F. in 2017 IEEE International Conference on Computer Design (ICCD). 463-468.
    16 Garello, K. et al. in 2018 IEEE Symposium on VLSI Circuits. 81-82.
    17 Wang, X. et al. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching. Adv Mater 30, e1801318, doi:10.1002/adma.201801318 (2018).
    18 Garandel, T., Arras, R., Marie, X., Renucci, P. & Calmels, L. Electronic structure of the
    Co(0001)/MoS2 interface and its possible use for electrical spin injection in a single MoS2 layer. Physical Review B 95, doi:10.1103/PhysRevB.95.075402 (2017).
    19 Lu, C. I. et al. Spontaneously induced magnetic anisotropy in an ultrathin Co/MoS2 heterojunction. Nanoscale Horiz, doi:10.1039/d0nh00108b (2020).
    20 Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat Mater 13, 286-292, doi:10.1038/nmat3864 (2014).
    21 Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Physics Reports 690, 1-70, doi:10.1016/j.physrep.2017.05.006 (2017).
    22 Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24, 2320-2325, doi:10.1002/adma.201104798 (2012).
    23 Bruno, P. & Chappert, C. Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Physical Review B 46, 261-270, doi:10.1103/PhysRevB.46.261 (1992).
    24 Yue, L., Li, Z., Kirby, R. & Sellmyer, D. MFM studies of interlayer exchange coupling in Co/Ru/Co films: Effect of Ru layer thickness. Ultramicroscopy 109, 1040-1043, doi:10.1016/j.ultramic.2009.03.037 (2009).
    25 Arlt, J., Hitomi, T. & Dholakia, K. Atom guiding along Laguerre-Gaussian and Bessel light beams. Applied Physics B: Lasers and Optics 71, 549-554, doi:10.1007/s003400000376 (2000).
    26 Kasap, S. Principles of Electronic Materials and Devices. (McGraw-Hill, Inc., 2005).
    27 Cullity, B. D. & Graham, C. D. Introduction to Magnetic Materials. (Wiley, 2008).
    28 Losoi, S. Magnetic Anisotropy. (2015).
    29 Geim, A. K. & Novoselov, K. S. in Nanoscience and technology: a collection of reviews from nature journals 11-19 (World Scientific, 2010).
    30 Xiao, S. Q. et al. Atomic-layer soft plasma etching of MoS2. Scientific Reports 6, 19945, doi:10.1038/srep19945 (2016).
    31 P, V. M., Ganesh, K. R. & Kumar, P. S. A. Spin Hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized Pt/Co/Pt trilayers. Phys. Rev. B 96, 104412, doi:10.1103/PhysRevB.96.104412 (2017).
    32 Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Reviews of Modern Physics 87, 1213-1260, doi:10.1103/RevModPhys.87.1213 (2015).
    33 Watzel, J. & Berakdar, J. All-optical generation and ultrafast tuning of non-linear spin Hall current. Sci. Rep. 8, 17102, doi:10.1038/s41598-018-35378-4 (2018).
    34 Yang, W., Yang, H., Cao, Y. & Yan, P. Photonic orbital angular momentum transfer and magnetic skyrmion rotation. Opt Express 26, 8778-8790, doi:10.1364/OE.26.008778 (2018).

    下載圖示
    QR CODE