研究生: |
戴伯儒 Dai, Bo-Ru |
---|---|
論文名稱: |
Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds |
指導教授: |
陳瑞堂
Chen, Jui-Tang |
口試委員: |
林惠娥
Lin, Huey-Er 邱鴻麟 Chiu, Hung-Lin 陳瑞堂 Chen, Jui-Tang |
口試日期: | 2022/01/11 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 72 |
英文關鍵詞: | Christoffel symbols, Scalar curvatures, Riemannian manifold, Trüdinger constant |
DOI URL: | http://doi.org/10.6345/NTNU202200693 |
論文種類: | 學術論文 |
相關次數: | 點閱:87 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis calculates the Scalar curvature by expanding Christoffel symbols, so we get the relation about Scalar curvatures under conformal metrics. Then, we classify two-dimension Riemannian manifolds by Euler number and discuss the existence of the conformal metrics in the different Euler numbers. Finally, in the case of χ(M ) > 0, we give more details about the Trüdinger constant and see the possibilities for the different Trüdinger constants.
[1] R. Schoen and S.-T. Yau. Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.
[2] M. A. Golberg. The derivative of a determinant. The American Mathematical Monthly, 79(10):1124–1126, 1972.
[3] C. V. Pao. Nonlinear parabolic and elliptic equations. Plenum Press, New York, 1992.
[4] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
[5] Balmohan V. Limaye. Bounded Linear Maps, pages 75–118. Springer Singapore, Singapore, 2016.
[6] Olivier Druet, Emmanuel Hebey, and Frédéric Robert. Blow-up theory for elliptic PDEs in Riemannian geometry, volume 45 of Mathematical Notes. Princeton University Press, Princeton, NJ, 2004.
[7] Richard L. Wheeden and Antoni Zygmund. Measure and integral. Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2015. An introduction to real analysis.
[8] Walter Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
[9] Thierry Aubin. Some nonlinear problems in Riemannian geometry. Springer Mono-graphs in Mathematics. Springer-Verlag, Berlin, 1998.
[10] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
[11] Jerry L. Kazdan and F. W. Warner. A direct approach to the determination of gaussian and scalar curvature functions. Inventiones mathematicae, 28(3):227–230, Oct 1975.
[12] Jerry L. Kazdan and F. W. Warner. Existence and conformal deformation of metrics with prescribed gaussian and scalar curvatures. Annals of Mathematics, 101(2):317–331, 1975.
[13] Isaac Chavel. Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk.
[14] J. Moser. A sharp form of an inequality by N. Trüdinger. Indiana Univ. Math. J., 20:1077–1092, 1970/71.
[15] Robert Osserman. The isoperimetric inequality. Bull. Amer. Math. Soc., 84(6):1182–1238, 1978.