簡易檢索 / 詳目顯示

研究生: 張祐誠
Chang, You-Cheng
論文名稱: 在雙層材料鉑/鎳鐵合金中的自旋轉矩-鐵磁共振
Spin Torque-Ferromagnetic Resonance in Platinum and Permalloy Double Layer Materials
指導教授: 江佩勳
Jiang, Pei-hsun
口試委員: 胡淑芬
Hu, Shu-Fen
江宏仁
Jiang, Hong-Ren
口試日期: 2021/06/29
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: 鐵磁共振自旋軌道轉矩自旋轉矩-鐵磁共振
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101041
論文種類: 學術論文
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii 圖次 v 第1章 研究動機與文獻回顧 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 磁化動力學 2 1.2.2 不同材料的ST-FMR 2 第2章 理論研究 7 2.1 磁性材料 7 2.1.1 磁性材料種類 7 2.1.2 鐵磁性材料特性 10 2.1.3 磁異向性 (Magnetic Anisotropy) 13 2.1.4 鐵磁共振 (Ferromagnetic Resonance) 14 2.2 自旋電子學 (Spintronics) 19 2.2.1 自旋霍爾效應 (Spin Hall Effect) 19 2.2.2 自旋轉矩-鐵磁共振 (Spin-Torque Ferromagnetic Resonance) 20 第3章 儀器設備及樣品製作流程 22 3.1 光微影製程技術 (Photolithography) 22 3.1.1 共平面波導 (Coplanar Waveguide) 22 3.1.2 繪圖及模擬 23 3.1.3 UV-LED顯微曝光系統 25 3.2 電子束蒸鍍技術 (Electron Beam Evaporation) 28 3.3 向量網路分析儀 (Vector Network Analyzer) 31 3.4 致冷機降溫系統 33 3.5 ST-FMR實驗架設 34 3.5.1 樣品製作 34 3.5.2 FMR量測 36 3.5.3 ST-FMR量測 36 3.5.4 低溫ST-FMR量測 37 第4章 實驗結果與討論 39 4.1 ST-FMR數據測量 39 4.2 有效磁化場 41 4.3 ST-FMR擬合 42 4.3.1 對稱及反對稱貢獻 43 4.3.2 自旋霍爾角 46 4.4 低溫量測 47 4.4.1 低溫量測下的樣品改裝 47 4.4.2 變溫下的ST-FMR 48 4.4.3 變溫下的有效磁化場 49 4.4.4 變溫下的自旋霍爾角 51 4.5 結果討論及未來展望 52 4.5.1 結果討論 52 4.5.2 未來展望 53 參考文獻 54 實驗補充資料 i

    1. Griffiths, J.H., Anomalous high-frequency resistance of ferromagnetic metals. Nature, 1946. 158(4019): p. 670-671.
    2. Kittel, C., On the theory of ferromagnetic resonance absorption. Physical review, 1948. 73(2): p. 155.
    3. Kato, Y.K., et al., Observation of the spin Hall effect in semiconductors. science, 2004. 306(5703): p. 1910-1913.
    4. Jungwirth, T., J. Wunderlich, and K. Olejník, Spin Hall effect devices. Nature materials, 2012. 11(5): p. 382-390.
    5. Kajiwara, Y., et al., Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature, 2010. 464(7286): p. 262-266.
    6. Liu, L., et al., Spin-torque ferromagnetic resonance induced by the spin Hall effect. Physical review letters, 2011. 106(3): p. 036601.
    7. Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-558.
    8. Mellnik, A., et al., Spin-transfer torque generated by a topological insulator. Nature, 2014. 511(7510): p. 449-451.
    9. Zhang, W., et al., Research Update: Spin transfer torques in permalloy on monolayer MoS2. APL Materials, 2016. 4(3): p. 032302.
    10. Zhang, W., et al., Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Science advances, 2016. 2(9): p. e1600759.
    11. Kittel, C., Introduction to Solid State Physics, 8th Edition. Wiley. 2005.
    12. Chesnel, K., Nanoscale Magnetic Domain Memory, in Magnetism and Magnetic Materials. 2017, IntechOpen.
    13. Nan, T., et al., Comparison of spin-orbit torques and spin pumping across NiFe/Pt and NiFe/Cu/Pt interfaces. Physical Review B, 2015. 91(21): p. 214416.
    14. Jiles, D.C. and D.L. Atherton, Theory of ferromagnetic hysteresis. Journal of applied physics, 1984. 55(6): p. 2115-2120.
    15. Aharoni, A., Brown’s “fundamental theorem” revisited. Journal of Applied Physics, 2001. 90(9): p. 4645-4650.
    16. Fitzgerald, A.E., et al., Electric machinery. Vol. 5. 2003: McGraw-Hill New York.
    17. Young, H.D., R.A. Freedman, and A.L. Ford, University Physics with Modern Physics Technology Update. 2013: Pearson Education.
    18. 王柏堯, 磁性薄膜中之磁矩方向操控. 物理雙月刊, 2017 8月 39卷 第四期.
    19. Stohr, J. and H. Siegmann, Magnetism, From Fundamentals to Nanoscale Dynamics, ser. Solid State Sciences Series. Berlin: Springer, 2006.
    20. Nickel, J., Magnetoresistance overview. 1995: Hewlett-Packard Laboratories, Technical Publications Department.
    21. Kittel, C., Ferromagnetic resonance. J. phys. radium, 1951. 12(3): p. 291-302.
    22. Slater, J.C., Quantum theory of atomic structure. 1960.
    23. Landau, L. and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, in Perspectives in Theoretical Physics. 1992, Elsevier. p. 51-65.
    24. Taniguchi, T. and H. Imamura, Spin Pumping in Ferromagnetic Multilayers. Modern Physics Letters B, 2008. 22(30): p. 2909-2929.
    25. Iida, S., The difference between gilbert's and landau-lifshitz's equations. Journal of Physics and Chemistry of Solids, 1963. 24(5): p. 625-630.
    26. Ando, K., et al., Inverse spin-Hall effect induced by spin pumping in metallic system. Journal of applied physics, 2011. 109(10): p. 103913.
    27. Hirsch, J., Spin hall effect. Physical review letters, 1999. 83(9): p. 1834.
    28. Zhang, S., Spin Hall effect in the presence of spin diffusion. Physical review letters, 2000. 85(2): p. 393.
    29. Sinova, J., et al., Universal intrinsic spin Hall effect. Physical review letters, 2004. 92(12): p. 126603.
    30. Valenzuela, S.O. and M. Tinkham, Direct electronic measurement of the spin Hall effect. Nature, 2006. 442(7099): p. 176-179.
    31. Reynolds, N., et al., Spin-Hall Torques Generated by Rare-Earth (Lanthanide) Thin Films. arXiv preprint arXiv:1612.01927, 2016.
    32. Guimaraes, M.H., et al., Spin–orbit torques in NbSe2/permalloy bilayers. Nano letters, 2018. 18(2): p. 1311-1316.
    33. Wang, Y., et al., Determination of intrinsic spin Hall angle in Pt. Applied Physics Letters, 2014. 105(15): p. 152412.
    34. Pozar, D.M., Microwave engineering. 2011: John wiley & sons.
    35. Ruane, W., et al., Controlling and patterning the effective magnetization in Y3Fe5O12 thin films using ion irradiation. AIP Advances, 2018. 8(5): p. 056007.
    36. Sklenar, J., et al., Spin Hall effects in metallic antiferromagnets–perspectives for future spin-orbitronics. AIP Advances, 2016. 6(5): p. 055603.
    37. Wang, Y., R. Ramaswamy, and H. Yang, FMR-related phenomena in spintronic devices. Journal of Physics D: Applied Physics, 2018. 51(27): p. 273002.
    38. Zhao, Y., et al., Experimental investigation of temperature-dependent Gilbert damping in permalloy thin films. Scientific reports, 2016. 6(1): p. 1-8.
    39. Akouala, C.R., et al., Planar Hall effect and anisotropic magnetoresistance in semiconducting and conducting oxide thin films. Applied Physics A: Materials Science & Processing, 2019. 125(5).
    40. Kuanr, B.K., et al., Effect of temperature on the ferromagnetic-resonance field and line width of epitaxial Fe thin films. IEEE Transactions on Magnetics, 2009. 45(10): p. 4015-4018.

    無法下載圖示 電子全文延後公開
    2026/08/11
    QR CODE