簡易檢索 / 詳目顯示

研究生: 侯大鈞
Hou, Da-Jun
論文名稱: 基於低頻表面電漿極化子的漏波天線與微帶傳輸線
Leaky wave antenna and microstrip line based on spoof surface plasmon polariton
指導教授: 吳謙讓
Wu, Chien-Jang
吳家和
Wu, Jin-Jei
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 84
中文關鍵詞: 表面電漿極化子低頻表面電漿極化子雙耳金屬磚塊天線微帶傳輸線亞波長等效電路
英文關鍵詞: SPPs, spoof SPPs, double ear metallic blocks, radiation, microstrips, subwavelength, equivalent Circuit
DOI URL: http://doi.org/10.6345/DIS.NTNU.EPST.002.2018.E08
論文種類: 學術論文
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文裡,我們研究低頻表面電漿極化子(spoof surface plasmon polaritons, spoof SPPs)的特性,並將這個概念直接應用於波導以及微帶線上,對其傳輸特性進行理論與實驗的分析。
    本論文的主要研究如下:
    1. 表面電漿波導:
    我們提出一種基於低頻表面電漿極化子的高指向性輻射的新型波導結構,而這個高指向性的輻射場來自於波導結構的漏波模式。 這個波導結構是由一維陣列金屬磚塊結構所構成。 每一個金屬磚塊結構在其頂部存在開口凹槽以及附加雙耳,金屬磚塊陣列結構則按亞波長的方式排列而成(其週期間格遠小於波長)。 這個波導結構的數值分析結果顯示,藉由在金屬磚塊上加入挖空的溝槽,將可以引入新的低頻表面電漿極化子模式而這樣的模式主要集中在凹槽區。 並且其色散具有負的折射率,並且新的傳輸模式的色散曲線將會在較高的頻率時穿過光的傳播線的色散曲線,並進入輻射區,形成漏波模式。 實驗將對波導在微波頻段時的傳輸與漏波進行測量,其實驗結果與理論預測極為一致。
    2. 基於低頻表面電漿的微帶傳輸線:
    我們提出基於低頻表面電漿極化子的抗串擾的新型微帶傳輸線結構,藉由理論及實驗分析顯示,這種微帶結構的抗串擾強弱取決於微帶傳輸線的自感與模式傳播的相速度。 這類傳輸低頻表面電漿極化子的微帶傳輸線是由在傳統微帶線的邊緣引入亞波長週期波紋結構所構成。 亞波長週期微帶傳輸線結構的數值分析結果顯示,藉由在微帶傳輸線上加入挖空的凹槽,將可以引入新的低頻表面電漿極化子模式而這樣的模式的電磁場可以有的約束於微帶結構的下面。 採用數值方法所獲得的S參數可以用等效電路模型來萃取新型微帶線結構的等效電感與電容及與傳統微帶線間的耦合電容及互感。 利用網路分析儀將對亞波長週期微帶線結構測量S參數,其實驗結果顯示與理論預測極為一致。

    In this work, based on the use of the concept of spoof surface plasmon polaritons (spoof SPPs). It applies the concept to waveguide structure and microstrip line, and the transmission characteristics of numerical and experimental analysis.
    The important results of this paper as the followings:
    1. Surface plasma waveguide:
    We propose a new type of waveguide structure with high directivity radiation based on low frequency surface plasmon polaritons, and this high directivity of the radiation field from the waveguide structure of the leakage wave mode. The waveguide structure is composed of a one-dimensional array of metal block. Each metal block structure has an open slot at its top and an additional ear, metal block array structure is arranged in a subwavelength manner(The period lattice is much smaller than the wavelength). Numerical analysis of waveguide structure shows that by adding a open slots on the metal block, a new spoof surface plasmon polaritons mode can be introduced and such a mode is mainly concentrated in the groove region. Its dispersion curve has a negative refractive index, and the new transmission mode of the dispersion curve will be at a higher frequency through the light line, and going into a zone of radiation and forming of leakage wave mode. Experimental verification of such a leaky mode at microwave has been performed, and the experimental results are found to be consistent with the theoretical analysis.
    2. Based on Microstrip Transmission Line of spoof surface plasmon polaritons:
    We propose a novel microstrip transmission line structure based on low frequency surface plasmon polaritons, which is based on theoretical and experimental analysis. The crosstalk strength of this microstrip structure depends on the self-inductance and mode propagation of the microstrip line itself Phase velocity. The microstrip lines of this type of spoof surface plasmon polaritons are formed by the introduction of subwavelength periodic corrugations at the edges of conventional microstrip lines. The numerical analysis of the subwavelength periodic microstrip line structure shows that by adding a groove to the microstrip line, it is possible to introduce a new spoof surface plasmon polaritons mode and the electromagnetic field of such a mode can be confined Under the microstrip structure. The S-parameter obtained by numerical method can use the equivalent circuit model to extract the equivalent inductance and capacitance of the new microstrip line structure and the coupling capacitance and mutual inductance. Using the network analyzer to measure the S-parameters of the sub-wavelength periodic microstrip line structure, the experimental results show that it is consistent with the theoretical prediction.

    摘要 I Abstract III 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XIX 第一章 序論 1 1-1 低頻表面電漿極化子概述與發展 1 1-2 本論文的主要研究內容與特點 5 1-3 本論文的章節安排 7 第二章 COMSOL 模擬與研究 8 2-1 簡介COMSOL電磁模擬過程 8 第三章 低頻表面電漿波導的傳輸特性和漏波模式的輻射特性 14 3-1 簡介 14 3-2 雙耳空心金屬磚塊的結構 15 3-3 色散特性與結果討論 16 3-4 波導的傳輸與輻射特性 24 3-5 表面電漿波導在微波頻段的實驗驗證與理論計算 30 3-6 新型漏波輻射天線的設計 35 3-7 量測結果 41 第四章 基於低頻表面電漿極化子的微帶傳輸線的傳輸特性 44 4-1 簡介 44 4-2 電路設計與色散討論 45 4-3 凹槽微帶線的傳輸特性 51 4-4 實驗結果 61 4-5 等效電路 67 4-6 時域量測 70 第五章 結論 77 文獻回顧 79 發表著作 83 專利 84

    [1] H. Raether, Surface Plasmons (Springer-Verlag, 1988).
    [2] A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett., Vol. 30(12), 1524–1526, 2005.
    [3] R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express, Vol. 13, 977–984, 2005, doi: 10.1364/OPEX.13.000977.
    [4] L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express, Vol. 13, 6645–6650, 2005, doi:10.1364/OPEX. 13.006645.
    [5] J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces, ” Science, Vol. 305 (5685), 847–848, 2004.
    [6] F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt., Vol. 7, S97–S101, 2005.
    [7] De. Abajo, and F. J. Garcia, Light scattering by particle and hole arrays. Rev. Modern Phys., Vol. 79, 1267–1290, 2007.
    [8] A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer Surface plasmons,” Science, Vol. 308, 670–672, 2005.
    [9] S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett., Vol. 97(17), 176805, 2006.
    [10] Y. Chen, Z. Song , Y. Li , M. Hu , Q. Xing , Z. Zhang , L. Chai , C-Y. Wang , “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express, Vol. 14, 13022–13029, 2006, doi: 10.1364/OE.14.013021.
    [11] J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. Vol. 106(2), 021102, 2015.
    [12] D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express, Vol. 18, 754–764, 2010, doi:10.1364/ OE.18.000754.
    [13] G. Kumar, S. Li, M. M. Jadidi, and T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New Journal of Physics, Vol. 15, 85031–85041, 2013.
    [14] A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev., Vol. 79, 233104, 2009.
    [15] J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. of Electromagn. Waves and Appl. Vol. 23, 11–19, 2009.
    [16] W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express, Vol. 18, 21189–21503, 2010, doi: 10.1364/OE.18.021498.
    [17] Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high frequency circuit,” Opt. Express, Vol. 19, 21189–21198, 2011, doi: 10.1364/OE.19.021189.
    [18] T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett., Vol. 99(26), 261103, 2011.
    [19] J.J. Wu, D.J. Hou, T.J. Yang, I.J. Hsieh, Y.H. Kao, H.E. Lin, “ Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electronics Letters Vol. 48, 269–270, 2012.
    [20] L. Liu, Z. Li, B. Xu, J. Yan, P. Ning, C. Gu, “A high-efficiency rectangular waveguide to Domino plasmonic waveguide converter in X-band,” 3rd Asia-Pacific Conference on Antennas and Propagation 974–977, 2014, doi: 10.1109/APCAP.2014.6992666.
    [21] J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Progress in electromagnetics Research, Vol. 104, 113–123, 2010.
    [22] J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics, Vol. 6(1), 59–65, 2011.
    [23] J. J. Wu,D. J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express, Vol. 22(22), 26777–26787, 2014.
    [24] F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat., Vol. 43(4), 573–578, 2001.
    [25] D. N. Ladd and G. I. Costache, “Spice simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards,” IEEE Trans. Circ. Syst.: Analog Digital Sig. Process., Vol. 39(6), 342–347, 1992.
    [26] S. Seki and H. Hasegawa, “Analysis of crosstalk in very high-speed LSI/VLSI’s using a coupled multiconductor MIS microstrip line model,” IEEE Trans. Microwave Theory Technol., Vol. 32(12), 1715–1720, 1984.
    [27] A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res., Vol. 12, 139–148, 2010.
    [28] W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res., Vol. 109, 37–61, 2010.
    [29] S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. Vol. 10(12), 1663–1682, 1996.
    [30] J. Yang, Y. Francescato, D. Chen, J. Yang, and M. Huang, “Broadband molecular sensing with a tapered spoof plasmon waveguide,” Opt. Express, Vol. 23, 8583–8589, 2015, doi: 10.1364/OE.23.008583.
    [31] X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. Vol. 110(1), 40–45, 2013.
    [32] X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express, Vol. 21(25), 31155–31165, 2013.
    [33] J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett., Vol. 46(18), 1273–1274, 2010.
    [34] S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl., Vol. 25(8-9), 1156–1167, 2011.
    [35] Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt., Vol. 54(14), 4529–4533, 2015.
    [36] Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep., Vol. 5, 14853, 2015.
    [37] J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep., Vol. 5, 14461, 2015.
    [38] I. H. Chung, J. J. Wu, J. Q. Shen, and P. J. Huang, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength corrugated metallic wire with open hollow rings in THz regime,” Appl. Opt., Vol. 54(31), 9120–9126, 2015.
    [39] D. J. Hou, J. J. Wu, C.-J. Wu, J. Q. Shen, H. L. Chiueh, L. Y. Cheng, and H. E. Lin, “Experimental measure of transmission characteristics of low-frequency surface plasmon polaritons in frequency and time domains,” Opt. Express, Vol. 24(7), 7387-7397, 2016.
    [40] W. X. Tang, H. C. Zhang, J. F. Liu, J. Xu, and T. J. Cui, “Reduction of radiation loss at smallradius bend using spoof surface plasmon polariton transmission line,” Sci. Rep, Vol. 7, 41007, 2017.
    [41] 汤文轩,张浩驰,崔铁军, “人工表面等离激元及其在微波频段的应用,” 电 子 与 信 息 学 报, Vol. 39,1009-5896, 2017.
    [42] W. Zhang, “Research on Theory and Appl ication of Microstri p-type Spoof Surface Plasmon Polariton,”University of Science and Technology of China A dissertation for doctor’S degree,2016.
    [43] D. J. Hou, “The application of periodic metal structure in the microwave regimes,”Electrical Engineering Chung Hua University Master Dissertation,2014.

    無法下載圖示 本全文未授權公開
    QR CODE