簡易檢索 / 詳目顯示

研究生: 戴遠成
Yuan-Cheng Dai
論文名稱: 工作限制對人體多肢段運動學習的影響
The influence of learning on the body multisegmental movement under task constraints
指導教授: 劉有德
Liu, Yeou-Teh
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 工作限制主成分分析動力系統
英文關鍵詞: task constraints, principal component analysis, dynamical systems
論文種類: 學術論文
相關次數: 點閱:254下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工作限制對人體多肢段運動學習的影響

    研 究 生:戴遠成
    指導教授:劉有德
    摘 要
    當進行動作協調研究探討時,所面臨的主要挑戰就是尋找出複雜高維度的人體結構是如何被壓縮而形成低維度的協調動作型態。現今,運動行為的研究大都以 N. A. Bernstein (1967) 所提出自由度的問題當成其探討的出發點。本研究主要目的在於檢視多肢段的動作在運動學習過程中,機械自由度與動態自由度的組織變化情形。本研究以八位大學女生作為實驗參加者且先前沒有任何與本研究動作經驗。在練習的時段要求參加者雙手握持橫木槓站立於動態平衡台,並且盡量維持水平的姿勢。每天二十次試作練習,每次試作三十秒,共計六天 (一百二十次試作) 的練習。以 Kinema Tracer 3D 動作分析系統 (Kissei Comtec),藉由四部高速攝影機以 60Hz 取樣速度,擷取全身肢段十七個解剖標誌點的三維座標運動學參數。採用主成分分析來檢視動作系統的維度變化。所得資料以重複量數單因子變異數分析,t 檢定及交叉相關等統計進行比較其結果如下:.
    從本研究結果中缺乏充分的證據可以支持Bernstein (1967) 所提及的凍結與釋放自由度假說。人體全身多肢段中眾多機械自由度會以自我組織的方式,縮減成少數幾個動態自由度來獲得解決。運動學習過程中,練習不但會改變全身多肢段可控制的維度的數量,而且還會導致其相關變數解釋量的轉變。最後,經由本研究發現顯示,複雜的運動行為其機械自由度的招募與壓縮會深受工作、個體與環境多重限制的交互作用影響,同樣地動態自由度的時間空間組織也會因這些限制而改變。從動力系統的觀點,生物體複雜的型態與動力或許不需要複雜控制結構。協調型態更是取決於不同限制與透過探索策略,尋找出其最佳知覺工作場所的動力。
    關鍵字︰工作限制,主成分分析,動力系統

    The influence of learning on the body multisegmental movement under task constraints
    Graduate Student:Yuan-Cheng Dai
    Advisor:Yeou-Teh Liu
    Abstract

    A primary challege in the investigation of movement coordination is discovering how high-dimension body structures are compressed into low-dimensional movement coodination. N. A. Bernstein's formulation of the problems of degrees of freedom is often taken as the starting point.The main purpose of this study was to examine the process of learning multisegmental movement on the changes in the organization of mechanical and dynamical degrees of freedom. Eight female undergraduates were served as the participants of this investigation. None of participants had priod experience with the task.The participants were performed while holding the pole and standing to keep the platform in horizontal position for as long as possible .Each participant completed 6 days of practice; each practice day included 20 trials, each 30s in length. The kinematics of the movements was measured using a four-camera, Kinema Tracer 3D motion analysis system (Kissei Comtec) with a 17 anatomical landmark whole body set-up sampled at 60 Hz. Principal Component Analysis (PCA) was used to examine dimensional changes of movement system. The data were analyzed by repeated measure one-way ANOVA, t-test and cross correlation function at .05 significant level. The results are as follows:
    The results provide limited empirical evidence to support Bernstein’s (1967) freezing-releasing hypothesis .The multiple degrees of freedom of whole body segments are resolved into a few control DF. The multiple segments movement revealed that the number of controlled dimensions not only change across practice but also shifted their relative contribution. Finally, the present findings showed that the interaction of task, organismic, and evironmental constraints strongly influence the recruitment and suppesion of mechanical degrees of freedom also affects their spatiotemporal organization within the dynamical dgrees of freedom.Form dynamical systems perspective, complex patterns and dynamics might not require complex control structures. In addition, the coorination pattern depends on the different constraints, and search stratgies used to explore the dynamics of perceptual workplace.

    Key Words: task constraints, principal component analysis, dynamical systems

    目 次 口試委員與系主任簽字証書…………………………………………………… …I 博士論文電子檔案上網授權書……………………………………………………II 博士論文授權書……………………………………………………………………III 中文摘要……………………………………………………………………………IV 英文摘要……………………………………………………………………………V 謝誌…………………………………………………………………………………VI 目次…………………………………………………………………………………VII 第壹章 緒論……………………………………………………………………… 1 第一節 前言………………………………………………………… 1 第二節 問題背景…………………………………………………… 2 第三節 研究目的與假設…………………………………………… 5 第四節 研究範圍…………………………………………………… 6 第五節 名詞操作性定義…………………………………………… 6 第六節 研究的重要性……………………………………………… 8 第貳章 文獻探討……………………………………………………………10 第一節 不同理論觀點檢視運動行為………………………………10 第二節 運動學習階段性變化……………………………………………15 第三節 運動行為維度相關文獻…………………………………………15 第四節 運動學習的探索策略……………………………………………19 第五節 本章總結…………………………………………………………21 第三章 研究方法與步驟………………………………………………………………22 第一節 研究對象………………………………………………………22 第二節 實驗時間地點……………………………………………………22 第三節 實驗儀器設備……………………………………………………24 第四節 實驗場地佈置及說明……………………………………………25 第五節 實驗流程…………………………………………………………27 第六節 資料收集…………………………………………………………30 第七節 資料處理…………………………………………………………30 第八節 統計方法…………………………………………………………31 第四章 結果與討論…………………………………………………………33 第一節、 動態平衡成績表現分析……………………………………… … 33 第二節、 手持衡木槓全身關節活動度與肢段連結分析… ……………… 35 第三節、 主成分分析…………………………………… ………………… 47 第四節、 平衡板與橫木槓相關分析…………………… ………………… 50 第五章 討論 ……………………………………………………… …………… 58 第一節、 檢視Bernstein運動學習調節自由度的階段模式… ……………58 第二節、 人體多肢段運動行為的維度縮減 ………………………………61 第三節、 運動學習探索策略檢視 …………………………………………67 第四節、 運動學習個人化 …………………………………………………69 第五節、 結論 ………………………………………………………………71 引用文獻……………………………………………………………………………73 中文部分………………………………………………………………………73 英文部分………………………………………………………………………73 附錄…………………………………………………………………………………78 附錄一 實驗參加者同意書…………………………………………………78 附錄二 實驗參加者基本資料表……………………………………………79 圖 次 圖3-1 高速攝影機 ………………………………………………………………24 圖3-2 反光球 ……………………………………………………………………24 圖3-3動態平衡儀…………………………………………………………………25 圖3-4長方形校正架………………………………………………………………25 圖3-5校正架與動態平衡位置圖…………………………………………………25 圖3-6 Kinema Tracer 3D影像校正 ………………………………………………25 圖3-7實驗儀器與場地佈置圖……………………………………………………25 圖3-8實驗參加者反光球貼………………………………………………………27 圖3-9動態平衡儀反光球貼點……………………………………………………27 圖3-10實驗流程圖 ………………………………………………………………28 圖4-1未持橫木槓站立動態平衡儀成績表現圖…………………………………33 圖4-2手持橫木槓不同練習時段動態平衡成績表現圖…………………………34 圖4-3手持橫木槓於不同的練習時段人體上半身肢段關節角度圖……………36 圖4-4手持橫木槓於不同的練習時段人體上半身肢段關節角度變異圖………38 圖4-5手持橫木槓於不同的練習時段人體下半身肢段關節角度圖……………40 圖4-6手持橫木槓於不同的練習時段人體下半身肢段關節角度變異圖………42 圖4-7手持橫木槓於不同的練習時段人體上半身肢段關節連結變化圖………44 圖4-8手持橫木槓於不同的練習時段人體下肢段關節連結變化圖……………46 圖4-9實驗參加者S1於練習初期與末期平衡板、橫木槓相關圖 ……………50 圖4-10實驗參加者S2於練習初期與末期平衡板、橫木槓相關圖……………51 圖4-11實驗參加者S3於練習初期與末期平衡板、橫木槓相關圖……………51 圖4-12實驗參加者S4於練習初期與末期平衡板、橫木槓相關圖……………52 圖4-13實驗參加者S5於練習初期與末期平衡板、橫木槓相關圖……………52 圖4-14實驗參加者S6於練習初期與末期平衡板、橫木槓相關圖……………53 圖4-15實驗參加者S7於練習初期與末期平衡板、橫木槓相關圖……………53 圖4-16實驗參加者S8於練習初期與末期平衡板、橫木槓相關………………54 表 次 表3-1:實驗參加者基本資料表……………………………………………………22 表3-2:資料處理的取樣練習時段與練習試作表…………………………………31 表4-1:未持橫木槓前、後測動態平衡時間 t值檢定表…………………………33 表4-2:手持橫木槓於不同練習時段動態平衡時間比較表………………………34 表4-3:手持橫木槓動態平衡時間趨向分析摘要表………………………………34 表4-4:手持橫木槓於不同的練習時段人體上半身肢段關節角度比較表………35 表4-5:手持橫木槓於不同的練習時段人體上半身肢段關節角度變異表………37 表4-6:手持橫木槓於不同的練習時段下半身肢段關節角度表…………………39 表4-7:手持橫木槓於不同的練習時段下半身肢段關節活動度變異表…………41 表4-8:手持橫木槓於不同的練習時段人體上半身肢段關節交叉相關值表……43 表4-9:手持橫木槓於不同的練習時段人體下半身肢段關節交互相關值表……45 表4-10:未持橫木槓前、後測成份數 t值檢定表 ………………………………47 表4-11:手持橫木槓練習初期與練習末期成份數表 ……………………………47 表4-12:未持橫木槓初測與後測成分解釋量表 …………………………………48 表4-13:手持橫木槓練習初期與練習末期成分解釋量表 .………………………49 表4-14:八位參加者於練習初期平衡板與橫木槓時間延遲交叉相關值表 ……55 表4-15:八位參加者於練習末期平衡板與橫木槓時間延遲交叉相關值表 ……56

    中文部份:
    廖庭儀、劉有德,(2003)。以學習曲線描述協調型態的轉移。台東大學體育學報,創刊號,73-87。
    劉有德 (2004)。動力系統與運動行為。成大體育,38(4),1-7。
    陳秀惠 (2005)。量化全身性協調之工具─主成份分析。體育學報,38 (4),39-51。
    英文部份:
    Adams, J.A. (1971) A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111-150.
    Amblard, B., Assaiante, C., Lehel, H., & Marchland, A.R. (1994). A statistical approach to sensorimotor strategies: conjugate cross correlations. Journal of Motor Behavior, 26, 103-112.
    Bernstein, N. (1967). The coordination and regulation of movements. Oxford. England: Pergamon Press.
    Barela, J.A., Jeka, J.J.,& Clark, J.E. (1999). The use of somatosensory information during the acquisition of upright stance. Infant Behavior & Development, 22, 87-102.
    Balasubramaniam, R., & Turvey, M. T. (2004). Coordination modes in mutisegmental dynamics of hula hoping. Biological Cybernetics, 90, 176-190.
    Chen, H.H., Liu, Y.T., Mayer-Kress, G., & Newell, K. M. (2005). Learning the pedalo locomotion task. Journal of Motor Behavior, 37, 247-256.
    Callou, N., Nourrit, D., Deshamps, T., Lauriot, B.,& Delignieres. (2002). Overcoming spontaneous patterns of coordination during the acquisition of complex balancing task. Canadian Journal of Psychology. 56,283-293.
    Davids, K., Glazier, P., Araujo, D., & Bartlett, R. (2003). Movement system as dynamical systems (the functional role of variability and its implication for sport medicine). Sport Medicine, 33(4), 245-260.
    Daffertshofer, A., Lamoth, C. J. C., Meijer, O. G., & Beek, P. J. (2004). PCA in studying coordination and variability: a tutorial. Clinical Biomechanics, 19, 415-428.
    Dai, Y.C., Yen, Y.T., & Liu, Y.T. (2006) Practice sessions and task constraints on the postural control of dynamical balance. NASPSPA Conference in Denver, Colorado, USA.
    Ericsson, K. (2001) The path to expert golf performance: Insights from the masters on how to improve by deliberate practice. In P. Thomas (Ed.), Optimizing performance in golf (pp.1-58). Brisbane, Australia: Australian Academic Press.
    Fitts, P.M., & Posner, M. I. (1967). Human performance. Belmoont, CA: Brooks/Cole.
    Gibson, J. J. (1961). Ecological Optics. Vision Research, 1,253-262.
    Geert, P. V., & Dijk, M, V. (2002). Focus on variability: New tools to study intra-individual variability in development data. Infant Behavior & Development. 25, 340-347.
    Haken, H. (1996). Principles of brain functioning. Berlin: Springer.
    Higuchi, T., Imanaka, K., & Hatayama, T. (2002).Freezing degrees of freedom under stress: Kinematic evidence of constrained movement strategies. Human Movement Science, 21,831-846.
    Hodges, N. J., Hayes, S., Horn, R. R., & Williams, A. M. (2005). Changes in coordination, control and outcome as a result of extended practice on a novel motor skill. Ergonomics, 48, 11-14.
    Hollands, K. L., Wing, A.M., & Daffertshofer, A. (2004). Principal components in contemporary dance movements, San Diego, USA, Society for Neuroscience Conference, Publication: 28427.
    Hong, S., & Newell, K.M. (2006).Change in organization of degrees of freedom with learning. Journal of Motor Behavior, 38, 88-100.
    Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self assembly of rhythmic movement. Hillsdale, NJ: Lawrence Erlbaum and Associate.
    Kay, B. A. (1988). The dimensionality of movement trajectories and the degree of freedom problem: A tutorial. Human Movement Science. 7, 343-364.
    Kamm, K., Thelen, E., & Jensen, J.L. (1990). A dynamical systems approach to motor development. Physical Therapy, 70, 763-775.
    Ko, Y. G., Challis, J. H., & Newell, K. M. (2001). Postural coordination patterns as a function of dynamics of the support surface. Human Movement Science, 20,737-764.
    Kiemel,T., Oies, K.S., and Jeka, J.J.( 2002). Multisensory fusion and the stochastic structure of postural sway. Biological Cybernetics, 87. 262 - 277.
    Lackner, J. R., Rabin, E., & DiZio, P. (2001). Stabilization of postural by precision touch of the index finger with rigid and flexible filaments. Experimental Brain Research, 139, 454-464.
    Li, Z.M. (2006) Functional degrees of freedom. Motor Control, 10. (4), 301-310.
    McDonald, P.V., Van Emmerik,R.E.A., & Newell, K. M. (1989). The effects of practice on limb kinematics in a throwing task. Journal of Motor Behavior, 21, 245-264.
    Mitra, S., Amazeen, P. G., & Turvey, M. T. (1998). Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Human Movement Science, 17, 17-65.
    Mauerberg-deCastro, E. (2004) Developing an “Anchor”system to enhance postural control. Motor Control. 8, 339-358.
    Newell, K.M. (1986). Constraints on the development of coordination. In M.G. Wade & H.T.A. Whiting (Eds.), Motor development in children: Aspects of coordination and control. Amsterdam: Martinus Nijhoff Publishers.
    Newell, K. M., & Van Emmerik, R. E. A. (1989). The acquisition of coordination: Preliminary analysis of learning to write. Human Movement Science, 8. 17-32.
    Newell, K, M; Kugler, PN; Van Emmerik, R, E., & McDonald, P. V. (1989) Perspectives on the coordination of Movement. S.A Wallace (Editor).
    Newell, K. M. (1991). Motor skill acquisition. Annual Review Psychology. 42, 213-237.
    Newell, K. M., & Vaillancourt, D. E. (2001). Dimensional change in motor learning. Human Movement Science, 20, 695-715.
    Newell, K.M., Broderick, M.P., Deutsch, K.M. & Slifkin, A.B. (2003). Task goals and change in dynamical degrees of freedom with motor learning. Journal of Experimental Psychology: Human perception and performance, Vol. 29, No.2, pp. 379-387.
    Oullier, O., Bardy, B.G., Stoffregen, T.A., & Bootsma, R.J. (2004). Task specific stabilization of postural coordination during stance on a beam. Motor Control, 8, 174-187.
    Riccio, G ., & Stoffregen.T.A. (1988). Affordances as constraints on the control of stance. Human Movement Science, 7,265-300.
    Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225-260.
    SumwayCook, A., & Horak, F.B. (1986). Assessing the influence of sensory interaction on balance. Physical Therapy, 66, 1548-1550.
    Vereijken, B., van Emmerik, R. E. A., Whiting, H. T. A., & Newell, K. M. (1992). Free(z)ing degrees of freedom in skill acquisition. Journal of Motor Behavior, 24, 133-142.
    Van Emmerik, R.E.A., Rosenstein, M. T., McDermott W. J., & Hamill, J. (2004) A nonlinear dynamics approach to human movement. Journal of Applied Biomechanics, 20,396-420.
    Valerro, Cuevas, F. J. (2005). An integrative approach to the biomechanical function and neuromuscular control of the fingers. Journal of Biomechanics, 38, 673-684.
    Zatsiorsky, V.M. (1998). Kinematics of human motion. Human Kinetics, Champain,IL.

    下載圖示
    QR CODE