簡易檢索 / 詳目顯示

研究生: 韓承靜
Cheng-Ching Han
論文名稱: 心像旋轉作業中的心智表徵
The Mental Representation during the Mental Rotation Task
指導教授: 洪蘭
Hung, Lan
李田英
Lee, Tein-Ying
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 148
中文關鍵詞: 心像旋轉心智表徵眼球運動軌跡整體性複雜度
英文關鍵詞: complexity, eye movement scanpaths, integration, mental representation, mental rotation
論文種類: 學術論文
相關次數: 點閱:325下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視覺影像的轉換在化學的學習上扮演重要的角色,但目前心理學界尚未清楚視覺影像轉換之相關運作的關係。心像旋轉是旋轉腦海中的圖像的能力,是視覺影像轉換能力的一種。本研究藉由探究心像旋轉作業中的心像旋轉階段的心智過程,以釐清心像旋轉此一視覺影像轉換過程的機制以及內在的心像表徵特性。本研究設計六個實驗以探究心像旋轉之內在表徵和心智歷程以及心像旋轉作業中的眼球運動掃瞄軌跡特性。研究結果發現心像旋轉歷程包含簡單架構的旋轉以及部件細節的重建兩個細微過程,且心像旋轉時的心像並不完整,並發現旋轉心像時眼球運動掃瞄軌跡與該影像編碼時的眼球運動掃瞄軌跡有關。在化學教育上要幫助學生視覺影像轉換,圖形中的空間關係要儘量明確且具有可以幫助重建部件空間關係的參考軸。這樣的圖形不但能幫助學生記憶與辨識,在轉換上也比較容易降低視覺空間記憶的負荷。為了有效的幫助學生化學學習,宜進一步利用化學領域使用的圖形或符號作為實驗刺激材料,探究化學常用圖形在視覺轉換時重要的線索,才能在教學上加強該線索的使用。

    The transformation of visual images is very important during the learning of chemistry. It’s not yet clear about the relationship of the visual imagery transformation in psychology. To rotate or transfer the mental image in the mind, mental rotation is one of abilities about visual transformations. The study tried to investigate the mental process during the mental rotation phase in the mental rotation task, to clarify the mechanism of mental rotation phenomenon and the nature of mental representation during mental rotation. The study included six experiments to explore the nature of mental representation, the mechanisms of mental rotation and the scanpaths of eye movement in the mental rotation. There are three findings in the study. First, there are two subtle processes in the mental process of mental rotation – rotation of a reference line and reconstruction of the image. Second, the mental image is incomplete during mental rotation. Third, the eye movement scanpaths are relative during the encoding of one visual image and the rotating that visual mental images. IF a figure has an obvious reference line to restructure the components in the figure, it might help students transfer visual image. These kinds of figures not only help students remember and recognize them easier, but also reduce the visual spatial working memory in the transformation. The stimuli used in these experiments are specific to investigating the study only and the findings are not inferred overly to all visual transformations in the chemistry learning. It’s necessary to utilize the figures and symbols of the chemistry for stimuli of future experiments for searching the important index during any visual transformation in the chemistry learning.

    第壹章 緒論……………………………………………………1 第一節 研究背景與研究動機……………………………1 第二節 研究目的與研究問題……………………………6 第三節 名詞解釋…………………………………………7 第四節 研究範圍與研究限制……………………………8 第五節 研究假設…………………………………………9 第貳章 文獻探討………………………………………………11 第一節 視覺空間能力與化學的關係…………………………11 第二節 資訊的表徵─人類如何儲存心像……………………14 第三節 心像旋轉作業之相關研究……………………………19 第四節 資源有限的工作記憶能力……………………………24 第參章 研究方法………………………………………………29 第一節 研究設計………………………………………………29 第二節 實驗方法………………………………………………30 實驗一:圖形複雜度與整體性在心像旋轉作業中的影響……31 實驗二:不同判斷要求下圖形刺激材料的複雜度與整體性的影響…38 實驗三:方向線索對心像旋轉現象的影響……………………………43 實驗四:心像旋轉作業中圖形刺激中部件對心像旋轉現象的影響…49 實驗五:心像旋轉作業中心像表徵的完整性測試……………………55 實驗六:心像旋轉作業中的眼球運動掃瞄軌跡特性…………………59 第肆章 研究結果與討論………………………………………………71 第一節 研究結果………………………………………………………71 實驗一:圖形刺激材料的複雜度與整體性在心像旋轉作業中的影響.71 實驗結果……………………………………………………………71 討論...……………………………………………………………76 實驗二:不同判斷要求下圖形刺激材料的複雜度與整體性的影響…76 實驗結果…………………………………………………………76 討論………………………………………………………………………84 實驗三:方向線索對心像旋轉現象的影響…………………………87 實驗結果………………………………………………………………87 討論……………………………………………………………………92 實驗四:心像旋轉作業中圖形刺激之部件對心像旋轉現象的影響…93 實驗結果………………………………………………………………93 討論………………………………………………………………………98 實驗五:心像旋轉作業中心像表徵的完整性測試…………………98 實驗結果………………………………………………………………98 討論……………………………………………………………………112 實驗六:心像旋轉作業中的眼球運動掃瞄軌跡特性………………112 實驗結果………………………………………………………………112 討論……………………………………………………………………117 第二節 綜合討論……………………………………………………118 第伍章 總結、結論與建議…………………………………………121 第一節 總結…………………………………………………………121 第二節 結論…………………………………………………………125 第三節 建議…………………………………………………………126 參考文獻……………………………………………………………128

    Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35, 111-118.
    Ark, W. S. (2002). Neuroimaging studies give new insight to mental rotation. In R. Sprague (Ed.), Proceedings of the 35th Hawaii International Conference on System Sciences (pp. 1-7). Los Alamitos, CA: IEEE Computing Society Press.
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory : A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Vol. 2. Advances in research and theory. New York: Academic Press.
    Balaban, A. T. (1999). Visual Chemistry: Three-dimensional perception of chemical structures. Journal of the Science Education and Technology, 8(4), 251-255.
    Banich, M. T., & Heller, W. (1998). Evolving perspectives on lateralization of function. Current Directions in Psychological Science, 7, 1-2.
    Barnes, J., Howard, R. J., Senior, C., Brammer, M., Bullmore, E. T., Simmons, A., Woodruff, R., & David, A. S. (2000). Cortical activity during rotational and linear transformations. Neuropsychologia, 38, 1148-1156.
    Barsalou, L. W. (1994). Flexibility, structure, and linguistic vagary in concepts: Manifestations of a compositional system of perceptual symbols. In A. F. Collins, S. E. Gathercole, M. A. Conway & P. E. Morris (Eds.), Theories of memory (pp. 29-101). Hillsdale, NJ: Erlbaum.
    Ben-Zvi, R., Eylon, B., & Silberstein, J. (1987). Students' visualization of a chemical reaction. Education in Chemistry, July, 117-120.
    Brooks, L. R. (1968). Spatial and verbal components of the act of recall. Canadian Journal of Psychology, 22(5), 349-368.
    Chambers, D., & Reisberg, D. (1985). Can mental images be ambiguous? Journal of Experimental Psychology: Human Perception & performance, 11(3), 317-328.
    Chambers, D., & Reisberg, D. (1992). What an image depicts depends on what an image means. Cognitive Psychplogy, 24(2), 145-174.
    Cohen, D. J., & Kubovy, M. (1993). Mental rotation, mental representation and flat slopes. Cognitive Psychology, 25(3), 351-382.
    Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, G. J., Thompson, W. L., Anderson, A. K., Brookheimer, S. Y., Rosen, B. R., & Belliveau, J. W. (1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89-100.
    Collaer, M. L., & Hines, M. (1995). Human behavioral sex differences: A role for gonadal hormones during early development? Psychological Bulletin, 118, 55-107.
    Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7, 20-43.
    Cooper, L. A., & Podgorny, P. (1976). Mental transformation and visual comparison processes: effects of complexity and similarity. Journal of Experimental psychology : Human perception and performance, 2, 503-514.
    Cooper, L. A., & Shepard, R. N. (1973a). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.
    Cooper, L. A., & Shepard, R. N. (1973b). The time required to prepare for a rotated stimulus. Memory and Cognition, 1, 246-250.
    Cooper, L. A., & Shepard, R. N. (1975). Mental transformations in the identification of left and right hands. Journal of Experimental psychology : Human perception and performance, 104, 48-56.
    Dietrich, T., Krings, T., Neulen, J., Willmes, K., Erberich, S., Thron, A., & Sturm, W. (2001). Effects of bolld estrogen level on cortical activation patterns during cognitive activation as measured by functional MRI. NeuroImage, 13, 425-432.
    Eysenck, M. W., & Keane, M. T. (2000). Cognitive Psychology: A Student's Handbook (4th ed.). Hove, UK: Psychology Press.
    Farah, M. J. (1988a). Is visual imagery really visual? Overlooked evidence from neuropsychology. Psychological Review, 95(3), 307-317.
    Farah, M. J. (1988b). The neuropsychology of mental imagery: Converging evidence from brain-damaged and normal subjects. In J. Stiles-Davis, M. Kritchevsky & U. Bellugi (Eds.), Spatial cognition: Brain bases and development (pp. 33-56). Hillsdale, NJ: Erlbaum.
    Finke, R. A., Pinker, S., & Farah, M. J. (1989). Reinterpreting visual patterns in mental imagery. Cognitive Science, 13(3), 252-257.
    Haberlandt, K. (1997). Cognitive Psychology (2nd ed.). Boston: Allyn and Bacon.
    Habraken, C. L. (1996). Perceptions of chemistry: Why is the common perception of chemistry, the most visual of sciences, so distorted? Journal of the Science Education and Technology, 7, 205-214.
    Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil & P. D. Person (Eds.), Handbook of Reading Research (Vol. II, pp. 641-668). New York: Longman.
    Hines, M. (2004). Brain gender. New York: Oxford University Press.
    Hochberg, J., & Gellman, L. (1977). The effect of landmark features on mental rotation times. Memory and Cognition, 5, 23-26.
    Hoffmann, R., & Laszlo, R. (1991). Representation in chemistry. Angewandte Chemie, 30, 1-16.
    Jolicoeur, P. (1985). The time to name disoriented natural objects. Memory and Cognition, 13(4), 289-303.
    Jolicoeur, P., & Kosslyn, S. M. (1985a). Demand characteristic in image scanning experiments. Journal of Mental Imagery, 9(2), 41-49.
    Jolicoeur, P., & Kosslyn, S. M. (1985b). Is time to scan visual images due to demand characteristics? Memory & Cognition, 13(4), 320-332.
    Jolicoeur, P., Snow, D., & Murray, J. (1987). The time to identify disoriented letters: Effects of practice and font. Canadian Journal of Psychology, 41(3), 303-316.
    Jones, L., Jordan, K., & Stillings, N. (2001). Molecular visualization in science education. VA: Arlington: NCSA Access Center.
    Jordan, K., & Huntsman, L. A. (1990). Image rotation of misoriented letter strings: Effects of orientation cuing and repetition. Perception and Psychophysics, 48(4), 363-374.
    Jordan, K., Wustenberg, T., Heinze, H.-J., Peters, M., & Jancke, L. (2002). Women and men exhibit different cortical activation patterns during mental rotation task. Neuropsychologia, 40, 2397-2408.
    Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate sysytem: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137-172.
    Kimura, D. (1999). Sex and cognition. Massachusetts: MIT Press.
    Kosslyn, S. M. (1983). Ghosts in the mind's machine: Creating and using images in the brain. New York: W. W. Norton.
    Kosslyn, S. M. (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge: MIT press.
    Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology, 35, 151-161.
    Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Review Neuroscience, 9, 635-642.
    Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549-579.
    Kozma, R. B., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry instruction. Journal of the Learning Sciences, 9(2), 105-143.
    Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26, 207-231.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterisation of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498.
    Logie, R. H. (1999). State of the art: Working memory. The Psychologist, 12, 174-178.
    Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
    Marnor, G. S., & Zaback, L. A. (1976). Mental rotation by the blind? Does mental rotation depend on visual imagery? Journal of Experimental psychology : Human perception and performance, 2(4), 515-521.
    Mast, F. W., & Kosslyn, S. M. (2002). Eye movements during visual mental imagery. TRENDS in Cognitive Sciences, 6(7), 271-272.
    Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 32(1), 33-54.
    Noh, T., & Scharmann, L. C. (1997). Instructional influence of a molecular-level pictorial presentation of matter on students' conceptions and problem-solving ability. Journal of Research in Science Teaching, 34(2), 199-217.
    Nye, M. J. (1993). From Chemical Philosophy to theoretical chemistry. Berkeley, CA: University of California Press.
    Palmer, S. E. (1975). Visual perception and world knowledge: Notes on a model of sensory-cognitive interaction. San Francisco: W. H. Freeman.
    Parsons, L. M. (2003). Superior parietal cortices and varieties of mental rotation. TRENDS in Cognitive Sciences, 7(12), 515-517.
    Peterson, M. A., Kihlstrom, J. E., Rose, P. M., & Glisky, M. L. (1992). Mental images can be ambiguous: Reconstruals and reference-frame reversals. Memory & Cognition, 20(2), 107-123.
    Pylyshyn, Z. W. (1973). What the mind's eye tells the mind's brain: A critiqye of mental imagery. Psychological Bulletin, 80, 1-24.
    Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88(1), 16-45.
    Pylyshyn, Z. W. (2003). Return of the mental images: are there really pictures in the brain? TRENDS in Cognitive Sciences, 7(3), 111-112.
    Rahman, Q., Abrahams, S., & Jussab, F. (2005). Sex differences in a human analogue of the Radial Arm Maze: The "17-Box Maze Test". Brain and Cognition, 58, 312-317.
    Rahman, Q., & Wilson, G. D. (2003). Large sexual orientation related differences in performance on mental rotation and judgment of line orientation. Neuropsychology, 17, 25-31.
    Reed, S. (1974). Structural descriptions and the limitations of visual images. Memory & Cognition, 2(2), 329-336.
    Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7(1-3), 17-42.
    Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368-373.
    Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., Geogopoulos, A. P., Tegeler, C., Ugurbil, K., & Kim, S. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12, 310-320.
    Roberts, J. E., & Bell, M. A. (2003). Two- and three-dimensional mental rotation tasks lead to different parietal laterality for men and women. International Journal of Psychophysiology, 50, 235-246.
    Rumelhart, D. E., & Norman, D. (1988). Representation in memory. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey & R. D. Luce (Eds.), Stevens' handbook of experimental psychology. Vol. 2. Learning and cognition (2 ed., pp. 511-587). New York: Wiley.
    Seddon, G. M., & Eniaiyeju, P. A. (1986). The understanding of pictorial depth cues, and the ability to visualise the rotation of three-dimensional structures in diagrams. Research in Science and Technological Education, 4(1), 29-37.
    Seddon, G. M., Eniaiyeju, P. A., & Chia, L. H. L. (1985). The factor structure for mental rotations of three-dimensional structures represented in diagrams. Research in Science and Technological Education, 3(1), 29-42.
    Seddon, G. M., & Shubber, K. E. (1985). Learning the visualization of three-dimensional spatial relationships in diagrams at different ages in Bahrain. Research in Science and Technological Education, 3(2), 97-108.
    Shenton, J. T., Schwoebel, J., & Coslett, H. B. (2004). Mental motor imagery and the body schema: evidence for proprioceptive dominance. Neuroscience Letters, 370, 19-24.
    Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT press.
    Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703.
    Shubber, K. E. (1990). Learning the visualization of rotations in diagrams of three dimensional structures. Research in Science and Technological Education, 8(2), 145-154.
    Sternberg, R. J. (1999). Cognitive Psychology. Fort Worth: Harcourt Brace College Publishers.
    Tagaris, G. A., Kim, S. G., Strupp, J. P., Anderson, P., Ugurbil, K., & Geogopoulos, A. P. (1996). Quantutative relations between parietal activation and performance in mental rotation. NeuroReport, 7, 773-776.
    Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicrosopic and symbolic representations in chemical explanations. International of Journal of Science Education, 25(11), 1353-1368.
    Tuckey, H., Selvaratnam, M., & Bradley, J. (1991). Identification and rectification of student difficulties concerning three-dimensional structures, rotation, and reflection. Journal of Chemistry Education, 68(6), 460-464.
    Voyer, D., & Saunders, K. A. (2004). Gerder differences on the mental rotations test: a factor analysis. Acta Psychologica, 117, 79-94.
    Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250-270.
    Waugh, N. C., & Norman, D. (1965). Primary memory. Psychological Review, 72, 89-104.
    Weiss, E., Siegentopf, C. M., Deisenhammer, E. A., Hoptman, M. J., Kremser, C., Golaszewski, S., Felber, S., Fleischhacker, W. W., & Delazer, M. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344, 169-172.
    Wesenick, M.-B. (2003). Limitations of human visual working memory. Unpublished Dissertation, Ludwig-Maximilians University, Munchen.
    Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68, 77-94.
    Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental psychology : General, 131(1), 48-64.
    Windischberger, C., Lamm, C., Bauer, H., & Moser, E. (2003). Human motor cortex activity during mental rotation. NeuroImage, 20, 225-232.
    Winn, W. (1991). Learning from maps and diagrams. Educational Psychology Review, 3, 211-247.
    Wraga, M., Thompson, W. L., Alpert, N. M., & Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain and Cognition, 52, 135-143.
    Wu, H.-K., Krajcik, J. S., & Soloway, E. (2000). Using technology to support the development of conceptual understanding of chemical representations. In B. Fishman & S. O'Connor-Divelbiss (Eds.), Fourth International Conference of the Learning Sciences (pp. 121-128). Mahwah, NJ: Erlbaum.
    Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821.
    Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry thinking learning. Science Education, 88, 465-492.
    Yoshino, A., Inoue, M., & Suzuki, A. (2000). A topographic electrophysiologic study of mental rotation. Cognitive Brain Research, 9, 121-124.

    下載圖示
    QR CODE