簡易檢索 / 詳目顯示

研究生: 徐尉庸
Hsu, Wei-Yung
論文名稱: 利用鈣鈦礦結構薄膜對連續體束縛態之太赫茲光電調變研究
Investigation of terahertz electro-optic modulations of bound states in the continuum utilizing perovskite structured thin films
指導教授: 楊承山
Yang, Chan-Shan
口試委員: 楊承山
Yang, Chan-Shan
鄭璧如
Cheng, Pi-Ju
李仰淳
Lee, Yang-Chun
口試日期: 2024/07/24
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 100
中文關鍵詞: 調制器太赫茲全介電超表面連續體束縛態鈣鈦礦甲基銨基碘化鉛薄膜鈮酸鋰薄膜
英文關鍵詞: terahert, modulator, all-dielectric metasurface, bound states in the continuum, perovskite, methylammonium lead iodide thin film, lithium niobate thin film
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401623
論文種類: 學術論文
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章、 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 太赫茲 3 1.2.2 超材料 5 1.2.3 連續體束縛態 7 1.2.4 連續體束縛態調制器 11 1.2.5 光子晶體 14 1.2.6 甲基銨基碘化鉛 16 1.2.7 鈮酸鋰 18 1.3 研究動機 20 1.4 論文架構 22 第二章、 理論原理與模擬 23 2.1 表面電漿子特性 23 2.2 有限元素分析法 29 2.3 品質因子 30 2.4 連續體束縛態 31 2.5 甲基胺基碘化鉛光電特性 34 2.6 鈮酸鋰電光特性 39 第三章、 數值模擬結果分析與討論 44 3.1 MAPbI3 薄膜電導率與介電常數計算 44 3.2 LiNbO3 薄膜折射率與消光係數以及介電常數計算 47 3.3 結合 MAPbI3 薄膜的 BIC 調制器結構設計 51 3.4 優化結合 MAPbI3 薄膜的 BIC 調制器結構設計 55 3.4.1 Si/PMMA/ MAPbI3 共振腔 55 3.4.2 改變 Si/PMMA/ MAPbI3 共振腔尺寸 58 3.4.3 MAPbI3 薄膜電導率對品質因子的影響 60 3.5 不同功率的外加光泵浦對共振腔的影響 65 3.6 結合 MAPbI3 與 LiNbO3 薄膜 BIC 調制器結構設計 75 3.6.1 Si/PMMA/MAPbI3/ PMMA/ LiNbO3 共振腔 77 3.6.2 LiNbO3/PMMA/ Si/PMMA/MAPbI3 共振腔 79 3.7 不同伏特的外加偏壓對共振腔的影響 84 第四章、 結論與未來展望 87 4.1 結論 87 4.2 未來展望 89 參考文獻 92

    Mourou, G., Stancampiano, C. V., Antonetti, A., & Orszag, A. (1981). Picosecond microwave pulses generated with a subpicosecond laser‐driven semiconductor switch. Applied Physics Letters, 39(4), 295-296.
    Barkan, A., Tittel, F. K., Mittleman, D. M., Dengler, R., Siegel, P. H., Scalari, G., ... & Ritchie, D. A. (2004). Linewidth and tuning characteristics of terahertz quantum cascade lasers. Optics letters, 29(6), 575-577.
    Mukherjee, P., & Gupta, B. (2008). Terahertz (THz) frequency sources and antennas-A brief review. International Journal of Infrared and Millimeter Waves, 29, 1091-1102.
    Pu, G., Zhang, L., Hu, W., & Yi, L. (2020). Automatic mode-locking fiber lasers: progress and perspectives. Science China information sciences, 63, 1-24.
    Laman, N., Harsha, S. S., Grischkowsky, D., & Melinger, J. S. (2008). High-resolution waveguide THz spectroscopy of biological molecules. Biophysical journal, 94(3), 1010-1020.
    Globus, T. R., Woolard, D. L., Khromova, T., Crowe, T. W., Bykhovskaia, M., Gelmont, B. L., ... & Samuels, A. C. (2003). THz-spectroscopy of biological molecules. Journal of biological physics, 29, 89-100.
    Sethy, P. K., Mishra, P. R., & Behera, S. (2015, February). An introduction to terahertz technology, its history, properties and application. In International conference on computing and communication.
    Ulatowski, A. M., Herz, L. M., & Johnston, M. B. (2020). Terahertz conductivity analysis for highly doped thin-film semiconductors. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 1431-1449.
    Ferguson, B., Wang, S., Gray, D., Abbot, D., & Zhang, X. C. (2002). T-ray computed tomography. Optics Letters, 27(15), 1312-1314.
    Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). Terahertz technology and its applications. Drug invention today, 5(2), 157-163.
    Fu, X., Liu, Y., Chen, Q., Fu, Y., & Cui, T. J. (2022). Applications of terahertz spectroscopy in the detection and recognition of substances. Frontiers in Physics, 10, 869537.
    Veselago, V. G. (1967). The electrodynamics of substances with simultaneously negative values of and. Usp. fiz. nauk, 92(3), 517-526.
    Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), 4773.
    Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 47(11), 2075-2084.
    Parveen, K. (2018). Metamaterials: Types, applications, development, and future scope. Intemational Journal of Advance Research, Ideas and Innovations in Technology, 4(3), 2325-2327.
    Shalaev, V. M. (2007). Optical negative-index metamaterials. Nature photonics, 1(1), 41-48.
    Pendry, J. B. (2004). Negative refraction. Contemporary Physics, 45(3), 191-202.
    Yang, M., Ma, G., Yang, Z., & Sheng, P. (2013). Coupled membranes with doubly negative mass density and bulk modulus. Physical review letters, 110(13), 134301.
    Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B. I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature communications, 5(1), 5553.
    Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens. science, 308(5721), 534-537.
    Zhu, Y., Vegesna, S., Zhao, Y., Kuryatkov, V., Holtz, M., Fan, Z., ... & Bernussi, A. A. (2013). Tunable dual-band terahertz metamaterial bandpass filters. Optics letters, 38(14), 2382-2384.
    Dong, Y., & Itoh, T. (2012). Metamaterial-based antennas. Proceedings of the IEEE, 100(7), 2271-2285.
    Dong, Y., & Itoh, T. (2012). Metamaterial-based antennas. Proceedings of the IEEE, 100(7), 2271-2285.
    Squires, A. D., Gao, X., Lam, S. K. H., Zhang, T., Han, Z. J., & Du, J. (2020, November). A 0.2-THz Frequency-Selective Cross-Slot Metamaterial Absorber. In 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (pp. 1-1). IEEE.
    Jiang, Z. H., Yun, S., Lin, L., Bossard, J. A., Werner, D. H., & Mayer, T. S. (2013). Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions. Scientific reports, 3(1), 1571.
    Luo, Z., Long, J., Chen, X., & Sievenpiper, D. (2016). Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors. Applied Physics Letters, 109(7).
    Miao, Z., Wu, Q., Li, X., He, Q., Ding, K., An, Z., ... & Zhou, L. (2015). Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Physical Review X, 5(4), 041027.
    Sun, S., He, Q., Xiao, S., Xu, Q., Li, X., & Zhou, L. (2012). Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature materials, 11(5), 426-431.
    Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B., & Capasso, F. (2017). Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical review letters, 118(11), 113901.
    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D., & Soljačić, M. (2016). Bound states in the continuum. Nature Reviews Materials, 1(9), 1-13.
    von Neumann, J., & Wigner, E. P. (1993). Über merkwürdige diskrete Eigenwerte. The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, 291-293.
    [32] Friedrich, H., & Wintgen, D. (1985). Interfering resonances and bound states in the continuum. Physical Review A, 32(6), 3231.
    Plotnik, Y., Peleg, O., Dreisow, F., Heinrich, M., Nolte, S., Szameit, A., & Segev, M. (2011). Experimental observation of optical bound states in the continuum. Physical review letters, 107(18), 183901.
    Azzam, S. I., Shalaev, V. M., Boltasseva, A., & Kildishev, A. V. (2018). Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Physical review letters, 121(25), 253901.
    Han, S., Cong, L., Srivastava, Y. K., Qiang, B., Rybin, M. V., Kumar, A., ... & Singh, R. (2019). All‐dielectric active terahertz photonics driven by bound states in the continuum. Advanced Materials, 31(37), 1901921.
    Chen, X., & Fan, W. (2020). Tunable bound states in the continuum in all-dielectric terahertz metasurfaces. Nanomaterials, 10(4), 623.
    John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical review letters, 58(23), 2486.
    Butt, M. A., Khonina, S. N., & Kazanskiy, N. L. (2021). Recent advances in photonic crystal optical devices: A review. Optics & Laser Technology, 142, 107265.
    Nair, R. V., & Vijaya, R. (2010). Photonic crystal sensors: An overview. Progress in Quantum Electronics, 34(3), 89-134.
    Thylén, L., Qiu, M., & Anand, S. (2004). Photonic crystals—a step towards integrated circuits for photonics. ChemPhysChem, 5(9), 1268-1283.
    Xie, Suxia, et al. "Photonic manipulation of the all-dielectric terahertz metasurface based on bound states in the continuum." Chinese Journal of Physics 88 (2024): 339-348.
    Liao, Q., Jin, X., & Fu, H. (2019). Tunable halide perovskites for miniaturized solid‐state laser applications. Advanced Optical Materials, 7(17), 1900099.
    Bao, X., Wang, Y., Zhu, Q., Wang, N., Zhu, D., Wang, J., ... & Yang, R. (2015). Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 297, 53-58.
    Thirumalairajan, S., Girija, K., Ganesh, V., Mangalaraj, D., Viswanathan, C., & Ponpandian, N. (2013). Novel synthesis of LaFeO3 nanostructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. Crystal growth & design, 13(1), 291-302.
    Lianghao, Y. U., Yonghong, C., Qingwen, G., Dong, T. I. A. N., Xiaoyong, L., Guangyao, M., & Bin, L. (2015). Layered perovskite oxide Y0. 8Ca0. 2BaCoFeO5+ δ as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 33(5), 519-523.
    Ekram, H., Galal, A., & Atta, N. F. (2015). Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode–towards a novel non-enzymatic glucose sensor. Journal of Electroanalytical Chemistry, 749, 42-52.
    Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 131(17), 6050-6051.
    Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 591.
    [49] Matthias, B. T., & Remeika, J. P. (1949). Ferroelectricity in the ilmenite structure. Physical Review, 76(12), 1886.
    Kaldis, E. (1980). Current topics in materials science. Vol. 4.
    Bartasyte, A., Margueron, S., Baron, T., Oliveri, S., & Boulet, P. (2017). Toward high‐quality epitaxial LiNbO3 and LiTaO3 thin films for acoustic and optical applications. Advanced Materials Interfaces, 4(8), 1600998.
    Savage, A. (1966). Pyroelectricity and spontaneous polarization in LiNbO3. Journal of Applied Physics, 37(8), 3071-3072.
    Binh, L. N. (2006). Lithium niobate optical modulators: Devices and applications. Journal of crystal growth, 288(1), 180-187.
    Singh, G., Yadav, R. P., & Janyani, V. (2010). Ti indiffused lithium niobate (Ti: LiNbO3) Mach-Zehnder interferometer all optical switches: a review. New Advanced Technologies.
    Wan, L., Yang, Z., Zhou, W., Wen, M., Feng, T., Zeng, S., ... & Li, Z. (2022). Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Science & Applications, 11(1), 145.
    Shao, L., Sinclair, N., Leatham, J., Hu, Y., Yu, M., Turpin, T., ... & Lončar, M. (2020). Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Optics Express, 28(16), 23728-23738.
    Guarino, A., Poberaj, G., Rezzonico, D., Degl'Innocenti, R., & Günter, P. (2007). Electro–optically tunable microring resonators in lithium niobate. Nature photonics, 1(7), 407-410.
    Rabiei, P., Ma, J., Khan, S., Chiles, J., & Fathpour, S. (2013). Heterogeneous lithium niobate photonics on silicon substrates. Optics express, 21(21), 25573-25581.
    Aftab, M., Mansha, M. S., Iqbal, T., & Farooq, M. (2023). Surface plasmon excitation: theory, configurations, and applications. Plasmonics, 1-19.
    Chen, Y., & Ming, H. (2012). Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors, 2, 37-49.
    Xu, L., Li, F., Liu, Y., Yao, F., & Liu, S. (2019). Surface plasmon nanolaser: Principle, structure, characteristics and applications. Applied Sciences, 9(5), 861.
    Takayama, O., Bogdanov, A. A., & Lavrinenko, A. V. (2017). Photonic surface waves on metamaterial interfaces. Journal of Physics: Condensed Matter, 29(46), 463001.
    [63] Melikyan, A., Lindenmann, N., Walheim, S., Leufke, P. M., Ulrich, S., Ye, J., ... & Leuthold, J. (2011). Surface plasmon polariton absorption modulator. Optics express, 19(9), 8855-8869.
    Sato, A. (2006). Surface plasmon fluorescence spectroscopy and optical waveguide fluorescence spectroscopy in limit of detection studies. Max Planck Institute for Polymer Research, Johannes Gutenberg University of Mainz, Mainz. Master Thesis.
    Suh, W., Wang, Z., & Fan, S. (2004). Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE Journal of Quantum Electronics, 40(10), 1511-1518.
    Kikkawa, R., Nishida, M., & Kadoya, Y. (2019). Polarization-based branch selection of bound states in the continuum in dielectric waveguide modes anti-crossed by a metal grating. New Journal of Physics, 21(11), 113020.
    Kikkawa, R., Nishida, M., & Kadoya, Y. (2020). Bound states in the continuum and exceptional points in dielectric waveguide equipped with a metal grating. New Journal of Physics, 22(7), 073029.
    Kyaw, C., Yahiaoui, R., Burrow, J. A., Tran, V., Keelen, K., Sims, W., ... & Searles, T. A. (2020). Polarization Selective Modulation of the Supercavity Resonance from Friedrich-Wintgen Bound States in the Continuum. arXiv preprint arXiv:2001.05956.
    Wang, H., Ling, F., Luo, C., Wang, C., Xiao, Y., Chang, Z., ... & Yao, J. (2022). A terahertz wave all-optical modulator based on quartz-based MAPbI3 thin film. Optical Materials, 127, 112235.
    Dutta, M., Ellis, C., Peralta, X. G., Bhalla, A., & Guo, R. (2015, August). Terahertz electrical and optical properties of LiNbO3 single crystal thin films. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX (Vol. 9586, pp. 28-37). SPIE.
    Yonekura, K., Jin, L., & Takizawa, K. (2008). Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal. Japanese journal of applied physics, 47(7R), 5503.
    Chu, Y. C., "Study of bound states in the continuum modes in terahertz modulators based on perovskite thin film," Master’s thesis, (2023).
    Hsu, W. Y., Cheng, P. J., Yang, C. S., " Bound states in the continuum behavior of THz modulators combining all-dielectric resonant cavities with Si and perovskite thin films", APL, in preparation.
    Hsu, W. Y., Cheng, P. J., Yang, C. S., " Study on terahertz electro-optic modulation of bound States in the continuum using perovskite-structured thin films", APL, in preparation.
    Chang, C. H., Lin, Y. H., Chen, Y. F., Lin, C. H., Lin, S. C., Chu, K. Y., ... & Lin, C. T. (2024). 衛星光通訊簡介. 科儀新知, (238), 54-71.

    無法下載圖示 電子全文延後公開
    2029/08/13
    QR CODE