研究生: |
張原華 |
---|---|
論文名稱: |
植基於模糊法則之室內機器人導航設計 Mobile Robot Navigation with Fuzzy Rules in Indoor Environment |
指導教授: | 曾煥雯 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 室內導航 、模糊法則 、雷射測距儀 、電子羅盤 |
英文關鍵詞: | Indoor navigation, Fuzzy rule, Laser range finder, Compass |
論文種類: | 學術論文 |
相關次數: | 點閱:283 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前行動機器人已經被廣泛的使用在各領域中,為了提高居家生活品
質,用來輔助人類生活的行動機器人也漸漸的開發出來,本論文提出使用
模糊法則進行導航的工作,使用雷射測距儀來執行障礙物閃避之工作,電
子羅盤來取得環境之方向。
行動機器人導航分為水平障礙物閃避及地面障礙物閃避兩種模式,水
平偵測模式能進行大部份之障礙物閃避之工作,而搭配地面偵測模式能讓
機器人在未知的室內環境下進行安全及正確的導航行為。
本研究在實驗室模擬一般之室內環境,如單一水平障礙物、連續型水
平及地面障礙物、水平與可橫越之地面障礙物等環境。在導航實驗中,對
於起始座標與終點座標之初始角度大小及路徑長短等問題,皆有進一步的
討論,以用來改善導航的準確率。
Now mobile robot be used in all kinds of field. For upgrade the quality of life,more and more mobile robots are developed to help people life. In this paper, the
navigation is based on fuzzy rules, laser range finder be used to avoid the obstacles, and obtains the direction by compass.
There are horizontal obstacle avoidance and ground obstacle avoidance of the mobile robot. The horizontal obstacle avoidance can avoid most of the obstacles. Using ground obstacle avoidance with horizontal mode could raise the safety and accuracy of the navigation task in unknown indoor environment.
In the research, the simulations of general environment are in laboratory.The environments are single horizontal obstacle, horizontal obstacle and ground obstacle side by side, horizontal obstacle and can be traversed obstacle and so forth. The effects of angle of start coordinate and goal coordinate, and the length of navigation distance are be discussed to improve the accuracy of the navigation experiment.
[1] C. C. Chang and K.T. Song, “Environment prediction for a mobile robot in a
dynamic environment,” IEEE Transactions on ROBOTICS AND
AUTOMATION, vol. 13, no. 6, pp. 862-872, Dec. 1997.
[2] A. Rottmann, O. Martinez Mozos, C. Stachniss and W. Burgard, “Semantic
Place classification of indoor environments with mobile robots using
boosting,” in Proc. Nat. Conf. Artif. Intell. (AAAI), Pittsburgh, 2005, pp.
1306–1311.
[3] S. Vasudevan, V. T. Nguyen, and R. Siegwart, “Towards a cognitive
probabilistic representation of space for mobile robots,” in Proc. IEEE
Int.Conf. Inf. Acquis., Shandong, Aug. 2006, pp. 353–359.
[4] S. Park and S. Hashimoto, “Autonomous mobile robot navigation using
passive RFID in indoor environment,” IEEE Transactions on INDUSTRIAL
ELECTRONICS, vol. 56, no. 7, pp. 2366-2373, Jul. 2009.
[5] A. Fujimori and P. N. Nikiforuk, “Adaptive Navigation of Mobile Robots
with Obstacle Avoidance,” IEEE Transactions on ROBOTICS AND
AUTOMATION, vol.13, no. 4, pp. 596-602, Aug. 1997.
[6] M. H. Fontaine and P. Boissy, “In-home telerehabilitation for geriatric
patients,” IEEE Engineering in Medicine and Biology Magazine, vol. 27, pp.
29-37, Jul. 2008.
[7] N. Ouadah, L. Ourak and M. Hamerlain, “Implementation of an oriented
positioning on a car-like mobile robot by fuzzy control,” IEEE Industrial
Electronics, Paris, Nov. 2006, pp. 4076-4081.
[8] X. Yang and Patel, “A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 35 , issue: 6 , pp. 1214-1224, Dec.
2005.
[9] K. Lee and W. K. Chung, “Effective maximum likelihood grid map with
conflict evaluation filter using sonar sensors,” IEEE Transactions on
ROBOTICS, vol. 25, no. 4, pp.887-901, Aug. 2009.
[10] Q. Liu, Y. Lu and C. Xie, “Optimal genetic fuzzy obstacle avoidance
controller of autonomous mobile robot based on ultrasonic sensors,” IEEE
International Conference on Robotics and Biomimetics, Kunming, Dec.
2006, pp. 125-129.
[11] D.F. Wolf, A. Howard and G.S. Sukhatme, “Towards geometric 3D mapping
of outdoor environments using mobile robots,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, Aug. 2005, pp. 1507-1512.
[12] D.F. Wolf, G.S. Sukhatme, D. Fox and W. Burgard, “Autonomous terrain
mapping and classification using hidden markov models,” IEEE
International Conference on Robotics and Automation, Apr. 2005, pp. 2026-
2031.
[13] D.F. Wolf and G.S. Sukhatme, “Semantic Mapping Using Mobile
Robots ,“ IEEE Transactions on ROBOTICS, vol. 24, issue: 2, pp.245-258,
Apr. 2008.
[14] B. Achmad and M.N. Karsiti, “Visual-based fuzzy navigation system for
mobile robot: Wall and corridor follower,” International Conference on
Intelligent and Advanced Systems, Kuala Lumpur, Nov. 2007, pp. 244-248.
[15] M. Abdellatif, “A vision-based navigation control system for a mobile
service robot”, SICE, 2007 Annual Conference, Takamatsu, Sep. 2007, pp.1517 – 1522.
[16] A.K. Ray, L. Behera, M. Jamshidi, “GPS and sonar based area mapping and
navigation by mobile robots,” IEEE International Conference on Industrial
Informatics, Cardiff, Jun. 2009, pp. 801-806.
[17] C. B. Low and D. Wang; “GPS-based path following control for a car-like
wheeled mobile robot with skidding and slipping,” IEEE Transactions on
Control Systems Technology, vol. 16, issue: 2, pp. 340-347, Mar. 2008.
[18] 美國iRobt, 機器人製造公司, http://www.irobot.com/。
[19] Luo, R.C.; Chou, Y.T.; Liao, C.T.; Lai, C.C. and Tsai, A.C., ” NCCU security
warrior: an intelligent security robot system”, Industrial Electronics Society,
2007. IECON 2007. 33rd Annual Conference of the IEEE, Taipei, Nov. 2007,
pp. 2960-2965.
[20] 陳耀茂, 模糊理論, 五南圖書, 2000.
[21] 楊英魁, FUZZY 控制, 中國生產力中心, 1992.
[22] 張兆旭, FUZZY 淺談, 松崗圖書, 1993.