研究生: |
徐代軒 Hsu, Tai-Hsuan |
---|---|
論文名稱: |
系統農藥芬普尼對斑馬魚神經系統的影響 Effects of the system pesticide of fipronil on neural system of the zebrafish |
指導教授: |
吳忠信
Wu, Chung-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 系統農藥 、芬普尼 、毛細胞 、運動行為 、氧化壓力 、發炎 、細胞凋亡 、斑馬魚 、側線 |
英文關鍵詞: | system pesticide, zebrafish, apoptosis, lateral line, hair cell, fipronil, motor behavior, oxidative stress, inflammation |
DOI URL: | http://doi.org/10.6345/NTNU202001715 |
論文種類: | 學術論文 |
相關次數: | 點閱:201 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
芬普尼 (fipronil) 是一種苯基吡唑類殺蟲劑,可選擇性抑制昆蟲中的γ-氨基丁酸(GABA)受體。儘管芬普尼已成為在水生環境中使用最廣泛的藥物,但很少有研究評估芬普尼的神經毒性對於水生脊椎動物的感覺和運動系統的影響。在本碩士論文的研究中,我們選擇斑馬魚(Danio rerio)實驗動物來探討芬普尼對感覺與運動系統的神經毒理作用。我們評估了急性芬普尼暴露對斑馬魚存活率,側線毛細胞數量以及神經毒性的影響,此外,我們比較了正常與芬普尼處理下斑馬魚的游泳軌跡熱圖、速度和距離的差異。我們的實驗結果發現成年斑馬魚暴露在0.5、1.0和2.0 ppm芬普尼的水中環境24小時,與正常處理斑馬魚比較,存活率隨著芬普尼濃度顯著遞減。而斑馬魚胚胎暴露在0.1、0.5和1.0 ppm芬普尼的水中環境24小時,與正常處理斑馬魚比較,側線毛細胞數量也是隨著芬普尼濃度顯著遞減。透過組織病理學和西方墨點法研究發現,成年斑馬魚暴露於1.0 ppm芬普尼的水中環境24小時,大腦組織的氧化壓力、發炎與細胞凋亡,與正常處理斑馬魚比較,則是顯著增加。通過影像追蹤觀察,成年斑馬魚暴露在0.1和0.5 ppm芬普尼的水中環境24小時,游泳軌跡的速度和距離隨著芬普尼濃度顯著遞減,儘管芬普尼的神經毒性主要針對無脊椎動物昆蟲的GABA受體而開發,但我們的研究結果發現,芬普尼不但會減低斑馬魚的存活率,還會透過損傷側線的毛細胞數量以及產生氧化壓力、發炎與細胞凋亡來損傷大腦組織來影響斑馬魚的感覺和運動系統。這結果推論系統農藥芬普尼誘導的神經毒性會損傷水生脊椎動物的感覺與運動系統。
Fipronil is a phenylpyrazole insecticide that may selectively inhibit gamma- aminobutyric acid (GABA) receptors in the insect. Although fipronil have become the most widely used in aquatic environments, few studies have evaluated neurotoxicity of fipronil in sensory and motor systems of the aquatic vertebrates. In the research of this master thesis, the zebrafish (Danio rerio) experimental model system was selected to explored the neurotoxicological effects of fipronil in sensory and motor systems. We assessed effects of acute fipronil exposure in the survival rate, the number of hair cell of lateral lines, and the brain neurotoxicity in the zebrafish, In addition, heat maps, speed, and distance of swimming trajectory were compared between the zebrafish with sham and fipronil treatments. Our results showed the survival rates of the adult zebrafish exposed to fipronil at 0.5, 1.0 and 2.0 ppm were significantly decreased from 24 hours of exposure. The number of hair cell of lateral lines of the zebrafish embryos exposed to fipronil at 0.1, 0.5 and 1.0 ppm were significantly decreased. As the fipronil concentration increased, the degree of reduction was enhanced in both of the survival rate of the adult zebrafish and the number of hair cell of the zebrafish embryos. Through histopathological and western blots observations, significant oxidative stress, inflammation, and apoptosis were observed in the brain of the adult zebrafish exposed to fipronil at 1.0 ppm. Through video tracking observations, the speed, and distance of swimming trajectory in the adult zebrafish exposed to fipronil at 0.1, and 0.5 ppm were significantly decreased from 24 hours of exposure. Although fipronil neurotoxicity specifically developed to target insect GABA receptors with low vertebrate toxicity, our results suggest that fipronil impairs sensory and motor systems in zebrafish by reducing the number of hair cell of lateral lines, and damaging neurons in the brain tissue via oxidative stress, inflammation, and apoptosis. Therefore, neurotoxicity of fipronil can reduce survival rate and movement in the zebrafish. The results also imply that fipronil-induced neurotoxicity could damage sensory and motor systems in the aquatic vertebrates.
Badgujar, C., & Bhanage, B. M. (2015). Thermo-chemical energy assessment for production of energy-rich fuel additive compounds by using levulinic acid and immobilized lipase. Fuel Processing Technology, 138, 139-146.
Barcellos, H. H., Koakoski, G., Chaulet, F., Kirsten, K. S., Kreutz, L. C., Kalueff, A. V., & Barcellos, L. J. (2018). The effects of auditory enrichment on zebrafish behavior and physiology. PeerJ, 6, 51-62.
Bhandiwad, A. A., Zeddies, D. G., Raible, D. W., Rubel, E. W., & Sisneros, J. A. (2013). Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. Journal of Experimental Biology, 216(18), 3504-3513.
Bobé, A., Coste, C. M., & Cooper, J. (1997). Factors Influencing the Adsorption of Fipronil on Soils. Journal of Agricultural and Food Chemistry, 45(12), 4861–4865.
Carvalho, T. R., & Giaretta, A. A. (2013). Bioacoustics reveals two new syntopic species of Adenomera Steindachner (Anura: Leptodactylidae: Leptodactylinae) in the Cerrado of central Brazil. Zootaxa, 3731(3), 533-551.
Chiu, L. L., Cunningham, L. L., Raible, D. W., Rubel, E. W., & Ou, H. C. (2008). Using the zebrafish lateral line to screen for ototoxicity. Journal of the Association for Research in Otolaryngology, 9(2), 178.
Chua, H. C., & Chebib, M. (2017). GABAA Receptors and the Diversity in their Structure and Pharmacology. Advances in Pharmacology, 79, 1-34.
Clasen, B., Loro, V. L., Cattaneo, R., Moraes, B., Lopes, T., de Avila, L. A., ... & Baldisserotto, B. (2012). Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: Implications for rice− fish cultivation. Ecotoxicology and Environmental Safety, 77, 45-51.
Coffin, A. B., Xu, J., & Uribe, P. M. (2018). Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death. AIP Conference Proceedings, 1965(1), 160001-1-160001-8.
Cole, L. M., Nicholson, R. A., & Casida, J. E. (1993). Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry and Physiology, 46(1), 47-54
Colwill, R. M., & Creton, R. (2011). Locomotor behaviors in zebrafish (Danio rerio) larvae. Behavioural Processes, 86(2), 222-229.
Fritschy, J. M., & Panzanelli, P. (2014). GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. European Journal of Neuroscience, 39(11), 1845-1865.
Gant, D. B., Chalmers, A. E., Wolff, M. A., Hoffman, H. B., & Bushey, D. F. (1998). Fipronil: action at the GABA receptor. Reviews in Toxicology, 2(1), 147-156.
Ghysen, A., & Dambly-Chaudiere, C. (2004). Development of the zebrafish lateral line. Current Opinion in Neurobiology, 14, 67-73.
Hainzl, D., Cole, L. M., & Casida, J. E. (1998). Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chemical Research in Toxicology, 11(12), 1529-1535.
He, Z., Guo, L., Shu, Y., Fang, Q., Zhou, H., Liu, Y., ... & Liu, D. (2017). Autophagy protects auditory hair cells against neomycin-induced damage. Autophagy, 13(11), 1884-1904.
Hill, A. J., Teraoka, H., Heideman, W., & Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences, 86(1), 6-19.
Holder P. J., Jones, A., Tyler, C. R., & Cresswell, J. E. (2018). Fipronil pesticide as a suspect in historical mass mortalities of honey bees. Proceedings of the National Academy of Sciences, 115(51), 13033-13038.
Hung, G. Y., Wu, C. L., Chou, Y. L., Chien, C. T., Horng, J. L., & Lin, L. Y. (2019). Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. Aquatic Toxicology, 209, 168-177.
Jackson, D., Cornell, C. B., Luukinen, B., Buhl, K., Stone, D. (2009). Fipronil General Fact Sheet. National Pesticide Information Center, Oregon State University Extension Services. Retrieved from http://npic.orst.edu/factsheets/fipronil.html.
Kairo, G., Provost, B., Tchamitchian, S., Abdelkader, F. B., Bonnet, M., Cousin, M., ... & Brunet, J. L. (2016). Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific Reports, 6(1), 1-12.
Kalueff, A. V., Gebhardt, M., Stewart, A. M., Cachat, J. M., Brimmer, M., Chawla, J. S., ... & Gaikwad, S. (2013). Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10(1), 70-86.
Khalil, S. R., Mohammed, W. A., Zaglool, A. W., Elhady, W. M., & Farag, M. R. (2019). Inflammatory and oxidative injury is induced in cardiac and pulmonary tissue following fipronil exposure in Japanese quail: mRNA expression of the genes encoding interleukin 6, nuclear factor kappa B, and tumor necrosis factor-alpha. Environmental pollution, 251, 564-572.
Kidd, H., & James, D.R. (1991). The Agrochemicals Handbook. London, England: Royal Society of Chemistry.
Kim, Y. J., Nam, R. H., Yoo, Y. M., & Lee, C. J. (2004). Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neuroscience letters, 355(1-2), 29-32.
Kindt, K. S., & Sheets, L. (2018). Transmission disrupted: modeling auditory synaptopathy in zebrafish. Frontiers in cell and developmental biology, 6, 114.
Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics, 8(5), 353-367.
Lin, L. Y., Horng, J. L., Kunkel, J. G., & Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. American Journal of Physiology-Cell Physiology, 290(2), C371-C378.
McCarroll, M. N., Gendelev, L., Kinser, R., Taylor, J., Bruni, G., Myers-Turnbull, D., ... & Gong, J. H. (2019). Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nature Communications, 10(1), 1-14.
Michel, V., Booth, K. T., Patni, P., Cortese, M., Azaiez, H., Bahloul, A., ... & Dégardin, J. (2017). CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Molecular Medicine, 9(12), 1711-1731.
Monesson-Olson B., McClain, JJ., Case, A. E., Dorman, H.E., Turkewitz, D.R., et al. (2018) Expression of the eight GABAA receptor α subunits in the developing zebrafish central nervous system. PLOS ONE 13(4): e0196083.
Narahashi, T., Zhao, X., Ikeda, T., Nagata, K., & Yeh, J. Z. (2007). Differential actions of insecticides on target sites: basis for selective toxicity. Human & Experimental Toxicology, 26(4), 361-366.
Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L., & Yeh, J. Z. (2010). Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pesticide Biochemistry and Physiology, 97(2), 149-152.
Organisation for Economic Co-operation and Development [OECD] (1992). Test guideline No. 203: Fish, acute toxicity test. Archives of OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris.
Ou, H. C., Raible, D. W., & Rubel, E. W. (2007). Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hearing Research, 233(1-2), 46-53.
Ou, H., Simon, J. A., Rubel, E. W., & Raible, D. W. (2012). Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hearing Research, 288(1-2), 58-66.
Owens, K. N., Cunningham, D. E., Macdonald, G., Rubel, E. W., Raible, D. W., Pujol, R. (2007). Ultrastructural analysis of aminoglycoside‐induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. The Journal of Comparative Neurology, 502, 522-543.
Park, H., Leeb, J. Y., Park, S., Song, G., Lim, Y. (2020). Developmental toxicity of fipronil in early development of zebrafish (Danio rerio) larvae: Disrupted vascular formation with angiogenic failure and inhibited neurogenesis. Journal of Hazardous Materials, 385, 121531.
Qian, Y., Wang, C., Wang, J., Zhang, X., Zhou, Z., Zhao, M., & Lu, C. (2017). Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation. Scientific Reports, 7(1), 1-11.
Ramaswamy, M., Cheng, R. K., & Jesuthasan, S. (2020). Identification of GABAergic neurons innervating the zebrafish lateral habenula. European Journal of Neuroscience, 00, 1–11.
Rico, E. P., Rosemberg, D. B., Seibt, K. J., Capiotti, K. M., Da Silva, R. S., & Bonan, C. D. (2011). Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicology and Teratology, 33(6), 608-617.
Roques, B. B., Leghait, J., Lacroix, M. Z., Lasserre, F., Pineau, T., Viguie, C., & Martin, P. G. (2013). The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism. Biochemical pharmacology, 86(7), 997-1039.
Rybak, L. P., & Ramkumar, V. (2007). Ototoxicity. Kidney International, 72(8), 931-935.
Stehr, C. M., Linbo, T. L., Incardona, J. P., & Scholz, N. L. (2006). The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicological Sciences, 92(1), 270-278.
Teixeira, F. P., Viader-Llargués, O., Torres-Mejía, E., ... & López-Schier, H. (2015). Inexhaustible hair-cell regeneration in young and aged zebrafish. Biology Open, 4: 903-909.
Tingle, C. C., Rother, J. A., Dewhurst, C. F., Lauer, S., & King, W. J. (2003). Fipronil: environmental fate, ecotoxicology, and human health concerns. In G. W. Ware (Eds.), Reviews of environmental contamination and toxicology (Vol. 176, pp. 1-66). New York, NY: Springer.
Tong, Q. L., Fan, Z. F., Yang, J. W., Li, Q., Chen, Y. X., Cheng, M. S., & Liu, Y. (2019). The selective oxidation of sulfides to sulfoxides or sulfones with hydrogen peroxide catalyzed by a dendritic phosphomolybdate hybrid. Catalysts, 9(10), 791.
Trump, V., W. J., & McHenry, M. J. (2008). The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). Journal of Experimental Biology, 211(13), 2105-2115.
United States Environmental Protection Agency (2005). Section 18 Ecological Risk Assessment for Fipronil Use to Control Cabbage–Maggot in Turnip and Rutabaga. Washington, D.C.
Vidau, C., González-Polo, R. A., Niso-Santano, M., Gómez-Sánchez, R., Bravo-San Pedro, J. M., Pizarro-Estrella, E., ... & Fuentes, J. M. (2011). Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology, 32(6), 935-943.
Wang, C., Qian, Y., Zhang, X., Chen, F., Zhang, Q., Li, Z., & Zhao, M. (2016). A metabolomic study of fipronil for the anxiety-like behavior in zebrafish larvae at environmentally relevant levels. Environmental Pollution, 211, 252-258.
Wang, X., Martínez, M. A., Wu, Q., Ares, I., Martinez-Larranaga, M. R., Anadón, A., & Yuan, Z. (2016). Fipronil insecticide toxicology: oxidative stress and metabolism. Critical Reviews in Toxicology, 46(10), 876-899.
Wangemann, P. (2006). Supporting sensory transduction: Cochlear fluid homeostasis and the endocochlear potential. The Journal of Physiology, 576, 11-21.
Warchol, M. E. (2010). Cellular mechanisms of aminoglycoside ototoxicity. Current opinion in otolaryngology & head and neck surgery, 18(5), 454-458.
Westerfield, M. (1995). The Zebrafish Book: A guide for the laboratory use of zebrafish (Danio rerio). Oregon: University of Oregon Press.
Weston, D. P., & Lydy, M. J. (2014). Toxicity of the insecticide fipronil and its degradates to benthic macroinvertebrates of urban streams. Environmental Science & Technology, 48(2), 1290-1297.
Williams, J. A. & Holder, N. (2000). Cell turnover in neuromasts of zebrafish larvae. Hear. Res. 143, 171-181.
Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. Journal of Neurobiology, 53(2), 157-171.
Wu, C. H., Lin, C. L., Wang, S. E., & Lu, C. W. (2020). Effects of imidacloprid, a neonicotinoid insecticide, on the echolocation system of insectivorous bats. Pesticide biochemistry and physiology, 163, 94-101.
Wu, J., Lu, J., Lu, H., Lin, Y., & Wilson, P. C. (2015). Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. Science of the Total Environment, 518, 139-147.
Zhang, B., Xu, Z., Zhang, Y., Shao, X., Xu, X., Cheng, J., & Li, Z. (2015). Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells. Pesticide Biochemistry and Physiology, 119, 81-89.
行政院農業委員會(2015)。公告 「限制 4.95% 芬普尼水懸劑之使用方法及其範圍」。取自https://www.baphiq.gov.tw/ws.php?id=12905
吳東川(2018)。Glycine和GABAA受體上保守型色氨酸及其相鄰區域:在受體調節和中樞神經系統內突觸抑制中的作用。科技部補助專題研究計畫成果報告(編號:MOST 104-2320-B-039-045-MY3),未出版。
吳庭青、高啟蘭、黃婉翠、陳立羣(2017年9月30日)。Gentamicin同時造成耳與腎毒性的案例討論。藥學雜誌電子報。取自https://jtp.taiwan-pharma.org.tw/132/073-078.html
吳蕙如(2013)。以斑馬魚胚胎評估半導體廢水之生物毒性(未出版之碩士論文)。國立交通大學,新竹市。
林孟汝(2017年8月22日)。芬普尼小百科。Yahoo奇摩理財網。取自https://tw.money.yahoo.com/%E8%8A%AC%E6%99%AE%E5%B0%BC%E5%B0%8F%E7%99%BE%E7%A7%91-033323090.html
張珍珍(2018)。氟蟲腈的危害及其在禽蛋中殘留檢測方法。河北農業,9,859-884。
彭蘊如、韋英杰、丁永芳、段金廒(2017)。基於斑馬魚模型的藥物毒性研究進展與中藥毒性研究新策略。中草藥,48(1),17-30。
廖常凱、邱彥璋(2012)。以斑馬魚生理變化偵測水中毒性物質技術研發。農政與農情,236,76-78。
鄒宜玲(2013)。順鉑對班馬魚仔魚側線毛細胞和皮膚離子細胞之影響(未出版之碩士論文)。國立臺灣師範大學,臺北市。