簡易檢索 / 詳目顯示

研究生: 陳冠明
論文名稱: 以線性時間在10 × n及其衍生之矩形棋盤上建構(1, 4)-開放騎士路徑之演算法
指導教授: 林順喜
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 騎士路徑問題(1, k)-騎士路徑問題一般化的(a, b)-騎士路徑問題分而治之的演算法漢米爾頓環遊軌跡問題
英文關鍵詞: knight's tour problem, (1, k)-knight's tour problem, Generalized (a, b)-knight's tours problem, Divide-and-conquer algorithm, Hamiltonian cycle problem
論文種類: 學術論文
相關次數: 點閱:161下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 騎士路徑問題(knight’s tour problem)已經被研究很長的一段時間,它的目的為在一棋盤上要找出一條路徑讓騎士能走過棋盤上的每一個格子恰好一次。2005年,此問題被林順喜教授和研究生魏仲良完全破解。2005年,Chia和Ong提出一般化的(a, b)-騎士路徑問題。2009年,Huang和Bai將一般化的(a, b)-騎士路徑問題簡化為 (1, k)-騎士路徑問題,並且找出了部份盤面的(1, k)-開放騎士路徑。而在本篇論文中,我們提出一個新的方法可以找出盤面的某一邊長為10,另一邊長為任意大小或者盤面某一邊長為10r,另一邊長為8s+10t的(1, k)-開放騎士路徑。而且此演算法在建構(1, k)-開放騎士路徑所需的執行時間為線性的,可以達到成本最佳化。

    The knight’s tour problem has been studied for a very long period of time. The main purpose of the knight’s tour problem is to find out a series of moves made by a knight visiting every square of a chessboard exactly once. The knight’s tour problem has been solved completely by Lin and Wei in 2005. Chia and Ong have presented the generalized (a, b)-knight’s tours problem for the first time. Huang and Bai have simplified the generalized knight’s tours problem to the (1, k)-knight’s tour problem, and have solved it partly. In this thesis, we propose a new algorithm to solve the (1, k)-open knight’s tour problem where the size of one side of the chessboard is equal to 10 and the size of the other side is arbitrary, or the size of the chessboard is equal to 10r and the size of the other side is equal to 8s+10t. Our algorithm runs in linear time on a sequential processor.

    附表目錄 v 附圖目錄 vi 第一章 簡介 1 第一節 問題描述 3 第二節 論文組織 4 第二章 相關研究探討 5 第三章 我們的方法與步驟 25 第一節 程式之加速 25 第二節 一些無解的盤面 37 第三節 拼圖法 45 第四章 結論 64 附錄 67 參考著作 74

    [1] Euler, L., Sulution d'une question curieuse qui ne paroit soumise a aucune analyse, Mem. Acad. Sci. Berlin 310-337 (1759).
    [2] Dudeney, H.E., Amusements in Mathematics, Thomas
    Nelson & Sons (1917).
    [3] Dudeney, H.E., Amusements in Mathematics, Dover Publications (1970).
    [4] Parberry, I., An efficient algorithm for the knight's tour problem, Discrete Applied Mathematics, 73, 251-260 (1997).
    [5] Lin, S.S., Wei, C.L., Optimal algorithms for constructing knight's tours on arbitrary n × m chessboards, Discrete Appl.Math, 146, 219-232 (2005).
    [6] Chia, G.L., Ong, S.H., Generalized knight's tours on rectangular chessboards, Discrete Appl. Math, 150, 80-98 (2005).
    [7] Schwenk, A.J., Which rectangular chessboards have a knight's tour?, Math. Magazine, 64, 325–332 (1991).
    [8] Huang, J., Bai, S., An efficient algorithm for the generalized (1, k)-knight's tours problem. First International Workshop onEducation Technology and Computer
    Science, 697-701 (2009).
    [9] Hu, J.L., The knight of the Chinese chess and mathematic, The adept of mathematic(1964).
    [10] Parberry, I., Kyek, O., Wegener, I., Bounds on the number of knight's tours, Discrete Appl. Math, 171-181 (1997).
    [11] Conrad, A., Hindrichs, T., Morsy, H., Wegener, I., Solution of the knight's Hamiltonian path problem on a chessboard, Discrete Appl. Math, 50, 125-134 (1994).
    [12] Honsberger, R., Posa's solution, Mathematical Gems, p. 145 (1973)
    [13] Cull, P., De Curtins, Knight's tour revisited, Fibonacci Quart, 16, 276-285 (1978)
    [14] Watkins, J.J., Hoenigman R.L., Knight's tours on a torus, Math. Mag, 70, 175-184 (1997)
    [15] Valtorta, M., Zahid, M.I., Warnsdorff's tours of a knight, Journal of Recreational Mathematics, 25:4, 263-275 (1993).
    [16] Takefuji, Y., Lee, K.C., Neural network computing for knight's tour problems, Neurocomputing, 4, 249-254 (1992).

    下載圖示
    QR CODE