簡易檢索 / 詳目顯示

研究生: 江庭萱
Ting Shiuan, Jiang
論文名稱: 水熱法合成氧化鋅奈米柱陣列於三五族多接面太陽能電池抗反射層之研究
Enhancement of Power Conversion Efficiency in III-V Multi-Junction Solar Cells by Hydrothermal Synthesizing ZnO Nanorod Arrays as the Anti-reflection layer
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 氧化鋅奈米柱抗反射層三接面串接式太陽能電池
英文關鍵詞: ZnO nanorods, Antireflection coating, triple junctions solar cells
論文種類: 學術論文
相關次數: 點閱:180下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在結合多層膜與折射率漸變結構的概念下,將氧化鋅奈米柱以水熱法成長於二氧化鈦薄膜上,並理論計算出最佳之折射率匹配組合,用於提升磷化銦鎵/砷化鎵/鍺三接面串接式太陽能電池之光電功率轉換效率。本研究先透過橢圓儀分析,將氧化鋅奈米柱等效分成三層複數折射率之物理薄膜,再代入艾里方程式(Airy formula) 計算其整體光學反射率。實驗上,我們所提出之氧化鋅奈米柱/二氧化鈦複合式多層抗反射結構展現出極低的反射率(average reflectivity, Ravg~5.7%),並具有全波段與對角度不敏感的特性,此與理論計算數值十分吻合。
    我們更進一步地與傳統的雙層抗反射膜二氧化矽/二氧化鈦以及單純氧化鋅奈米柱作比較,發現在垂直入射的條件下,氧化鋅奈米柱/二氧化鈦抗複合式多層抗反射結構能使多接面太陽能電池其電流密度提升約31.3%,而二氧化矽/二氧化鈦及氧化鋅奈米柱僅分別有27.3% 與28.7%的提升。當太陽光入射角度增加至80度時,氧化鋅奈米柱/二氧化鈦複合式多層抗反射結構依然能在元件電流密度提升約35.2%;反之,氧化鋅奈米柱卻只有24.3%的提升,而二氧化矽/二氧化鈦抗反射層的提升更降低至9.4%。
    因此,本論文所提出的結構,對於太陽能電池光電功率轉換效率的提升有極大的效益,且因對太陽光之入射角度不敏感,能提供較佳的封裝容忍度于後續的電池模組整合。此外,本論文結構製作容易且成本低廉,預期將能廣泛地應用於其他不同材料系統之太陽能電池結構。

    In this study, we theoretically and experimentally demonstrate a novel antireflection coating (ARC) structure by hydrothermally growing ZnO nanorods (NRs) upon titanium dioxide (TiO2) layer to enhance the overall power-conversion efficiency of InGaP/GaAs/Ge triple junctions solar cells. It was shown that our proposed ZnO NRs/TiO2 hybrid structure exhibits excellent broadband and omnidirectional AR behaviors, and remarkably enhances the omnidirectional photovoltaic performance of solar devices. As compared to other conventional ARC structures, the proposed ZnO NRs/TiO2 hybrid ARC improves the short-circuit current (JSC) of the solar device to about 31.3% under the normal incidence of solar illumination, and those are enhanced to about 27.3% and 28.7% by employing the conventional SiO2/ TiO2 double layers and pure ZnO NRs ARCs, respectively. Significantly, such JSC enhancement of ZnO NRs/TiO2 hybrid ARC remains in still even the incident angle of solar light increases to 80°, whereas that reduces to only 24.3% and 9.4% for the conventional SiO2/ TiO2 double layers and pure ZnO NRs ARCs, respectively. Additionally, as the measured low-reflectivity on our ZnO NRs/TiO2 hybrid ARC is broadband and omnidirectional, it provides a great potential and tolerance for the subsequence package with photovoltaic modules, and could be directly applied to other kinds of solar cells with different composited materials.

    摘要 I Abstract III 謝誌 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 序論與研究動機 1 (一) 太陽能源發展概況 1 (二) III-V 族多接面半導體太陽能電池發展現況 3 (三) 研究動機 4 參考文獻 8 第二章 理論背景及太陽能電池特性介紹 9 (一) 太陽能電池常用參數與定義 9 1. 太陽光譜 9 2. 光伏特效應(Photovoltaic effect) 11 3. 短路電流密度(Short-circuit current density, Jsc) 12 4. 開路電壓(Open Circuit Voltage ,VOC) 13 5. 填充因子與能量轉換效率 14 6. 量子效率(Quantum efficiency, QE) 15 參考文獻 17 第三章 抗反射層原理 18 (一) 多層膜結構 18 (二) 折射率漸變結構(Gradient Refractive Index) 20 (三) 氧化鋅文獻回顧 23 第四章 抗反射層設計 30 (一) 材料選擇 30 1. 二氧化鈦(Titanium dioxide, TiO2) 31 2. 二氧化矽(Silicon dioxide, SiO2) 31 (二) ZnO奈米柱成長 32 (三) 多接面太陽電池之限制電流層 33 (四) 抗反射層設計 36 (五) 太陽能電池效率計算 38 參考文獻 41 第五章 實驗製作與量測 42 (一) 雙層抗反射膜製作 42 1. 二氧化鈦(Titanium dioxide, TiO2) 42 2. 二氧化矽(Silicon dioxide, SiO2) 42 (二) 氧化鋅奈米柱與二氧化鈦 43 (三) 反射率量測 44 1. 鏡面反射 44 2. 漫射反射 46 (四) 電性量測 49 (五) 變角度反射率量測 51 (六) 變角度電性量測 53 第六章 結論 56

    [1.1] M. Wolf, “Historical Development of Solar cells,” in Solar Cells, ed. C. E. Backus (New York: IEEE Press, 1976).
    [1.2] http://www.nrel.gov/ Website of National Renewable Energy Laboratory
    [1.3] D. Crisp et.al.,“The performance of gallium arsenide/germanium solar cells at the Martian surface”, Acta Astronautica 54, 83-101(2003).
    [1.4] Antonio Luque and Steven Hegedus, “Handbook of Photovoltaic Science and Engineering”(Wiley, 2003).
    [2.1] P. R. Gast et al., “Solar Radiation,” in Handbook of Geophysics, ed. C.F. Campen et al. (New York: Macmillan, 1960), pp. 14-16 to 16-30.
    [2.2] M. P. Thekackara, “The Solar Constant and the Solar Spectrum Measured from a Research Aircraft, ” NASA Technical Report No. R-350(1970).
    [2.3] Terrestrial Photovoltaic Measurement Procedures, Report ERDA/ NASA/1022-77/16, June 1977.
    [2.4] D. Wohrle et al., “Organic solar cells,” Adv. Mater. 3(3), 129-138 (1991).
    [3.1] A. Luque, Handbook of Photovoltaic Science and Engineering (Wiley, 2003).
    [3.2] P. Yeh, Optical Waves in Layered Media (Wiley, 1998).
    [3.3] W. H. Southwell, “Gradient-index antireflection coatings,”Optics Letters, 8(11), 584-586 (1983).
    [3.4] J. A. Dobrowolski, “Toward perfect antireflection coatings: numerical investigation,” Applied Optics, 41(16), 3075-3083 (2002).
    [3.5] Emmett E. Perl et al., “Ultrabroadband and Wide-Angle Hybrid Antireflection Coatings With Nanostructures”, IEEE Journal of Photovoltaics, 4(3), 962-967(2014).
    [3.6] Yun-Ju Lee et al., “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells”, Nano Lett. 8(5), 1501-1505 (2008).
    [3.7] M. Krunks et al., “Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array”, Solar Energy Materials & Solar Cells, 92, 1016-1019 (2008).
    [3.8] M. Mehrabian et al., “UV detecting properties of hydrothermal synthesized ZnO nanorods,” Physica E, 43(6), 1141–1145 (2011).
    [3.9] F. Lu et al., “ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance,” Advanced Functional Materials, 18(7), 1047–1056 (2008).
    [3.10] http://en.wikipedia.org/wiki/Zinc_oxide
    [3.11] L. E. Greene et al., “General route to vertical ZnO nanowire arrays using textured ZnO seeds”, Nano Lett., 5, 1231(2005).
    [3.12] K. Govender et al., “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, Mater. Chem., 2004, 14, 2575.
    [3.13] M. Ladanov et al., “Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate,” Langmuir, 27(14), 9012–9017(2011).
    [3.14] B. Weintraub et al., “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale, 2(9), 1573–1587(2010).
    [3.15] S. Baruah et al.,“pH-dependent growth of zinc oxide nanorods,” Journal of Crystal Growth, 311(8), 2549–2554(2009).
    [3.16] Quang, Hong Le, et al. “Growth of ZnO Nanorods on GaN using aqueous solution method. ” Appl. Phys. Lett. 87, 101908 (2005).
    [3.17] L. Vayssieres et al., “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, J. Phys. Chem. B., 105, 3350(2001).
    [3.18] L. Vayssieres et al., “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395(2001).
    [3.19] S. Yamabi et al., “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem., 12, 3773–3778(2002).
    [3.20] L. E. Greene et al., Chem. Int. Ed., 42, 3031(2003).
    [3.21] L. E. Greene et al., “General route to vertical ZnO nanowire arrays using textured ZnO seeds”, Nano Lett, 5, 1231(2005).
    [3.22] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, Chem.Mater, 17, 1001(2005).
    [3.23] Huimin Gao et al., “The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells”, Materials Research Bulletin,43, 3345–3351(2008).
    [3.24] Kazuko Takanezawa et al., J. Phys. Chem. C, 111, 7218-7223(2007).
    [4.1] M. W. Wanlass et al., “Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 530–535.
    [4.2] Lee, Ya-Ju, et al. “Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. ” Optics express 21(106), A953-A963 (2013).

    QR CODE