簡易檢索 / 詳目顯示

研究生: 郭韋辰
Kuo, Wei-Chen
論文名稱: 結合擴增實境於教育桌遊對學生運算思維學習成效之影響
Effects of Integrating Augmented Reality into Educational Board Game on Performance of Students Learning Computational Thinking
指導教授: 許庭嘉
Hsu, Ting-Chia
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 遊戲式學習擴增實境運算思維桌上遊戲
英文關鍵詞: game-based learning, augmented reality, computational thinking, board game
DOI URL: http://doi.org/10.6345/NTNU201900620
論文種類: 學術論文
相關次數: 點閱:301下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為二因子實驗設計將一款以結構化程式設計為主題的桌上遊戲《機器人蓋城市》,英文名為Robot City,結合擴增實境輔助學習系統及多媒體教學學習方式,分別為實驗組1桌遊結合「擴增實境學習系統」、「多媒體教學學習模式」,實驗組2桌遊結合「擴增實境學習系統」、「傳統教學學習模式」,實驗組3為桌遊結合「多媒體教學學習模式」、控制組為桌遊一般模式,即沒有使用擴增實境和多媒體教學的傳統桌遊學習模式。目的在利用桌上遊戲的高互動性及高層次的思考,透過擴增實境中虛擬真實混合特性,藉由人機互動促進學生學習結構化程式設計,並培養其運算思維的能力。本實驗針對國中222位學生進行實驗,使用測驗與問卷量表作資料蒐集,研究結果顯示,學習成就方面使用擴增實境學習系統實驗組1及實驗組2,顯著較無使用擴增實境學習系統實驗組3及控制組學生低,同時,研究發現在認知負荷方面,實驗組3之學生認知負荷則顯著較高。本研究認為,適當的認知負荷,對於學習成就是有幫助的,但若提供過多的資訊,同時結合多媒體教學與擴增實境輔助學習系統,使學生須接受過多資訊,會造成學習成就不佳問題,學習動機方面,在無使用擴增實境的情況下,使用多媒體教學顯著高於傳統教學之學生。在合作學習傾向方面,實驗組之學生顯著較控制組之學生高。在創意自我效能方面實驗組1之學生因接觸擴增實境系統及多媒體教學,接受較多的外在資訊及更,豐富學生的視覺感,創意自我效能顯著較高。承上所述,擴增實境系統雖然帶給學生許多學習上的利處,但是仍有缺憾之處,建議未來桌遊擴增實境的設計,除了人機互動之外,要加強人與人之間的連結,才不會因為學生使用過多多媒體時,反而忽略原本桌遊最重要的人與人互動的價值而分散原有桌遊的學習成效。

    This study utilized the computational thinking educational board game named “Robot City” as the instructional material. The board game was also integrated with the augmented reality and the multimedia teaching. Experimental group 1 is the board game integrated the augmented reality learning system and multimedia instructional mode together. The experimental group 2 is the board game integrated with the augmented reality learning system. The experimental group 3 is the board game integrated with the multimedia instructional mode. The control group is general mode, board game learning without augmented reality and multimedia instruction mode. The purpose is to achieve the high interaction and high level thinking with the board game, and to help students learn the structure programming by human–computer interaction and cultivate their computational thinking with the augmented reality learning system from the integration of the virtual and reality. The participants of this study were 222 students. After the learning activities, the results found that the learning achievements of the experimental group 3 and control group were significant better than those of the experimental group 1 and 2. Moreover, the results revealed that the cognitive load of experimental group 3 was significantly higher than that of the other groups. This study consider that proper cognitive load is helpful for learning achievement, but if providing the students with too much information, such as integration of teacher-centered multimedia instruction and student-centered augmented-reality learning system, the students afforded too much information, leading to poor learning performance. As for the learning motivation, without use of augmented reality, multimedia instruction is significantly higher than the conventional instruction. In terms of collaborative tendency, the experimental groups outperformed the control group. The experimental group 1 received more external information which enriched the visual sense from both the augmented-reality learning system and the multimedia instruction, so that the creative self-efficacy of the experimental group 1 was significantly higher than those of the other groups. As mentioned above, although the augmented reality system brings many benefits to students, there are still some imperfections. It is recommended that the future development of board games integrated with the augmented reality. In addition to human-computer interaction, it is necessary to strengthen the interaction between people and to prevent students from ignoring the connection or collaboration among human, resulting in dispersing the learning effectiveness of the original board games when they are confront with too much multimedia.

    中文摘要 i 英文摘要 iii 目 錄 v 表 次 viii 圖 次 xi 第一章 緒 論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 名詞解釋 6 第二章 文獻探討 8 第一節 運算思維(computational thinking) 8 第二節 桌上遊戲 (Board game) 10 第三節 擴增實境 (Augmented Reality;AR) 12 一、 擴增實境之特性 12 二、 擴增實境之應用 13 第三章 系統開發 15 第一節 Robot City教育桌遊介紹 15 第二節 擴增實境系統介紹 20 第二節 系統操作引導介面及介紹 22 第四章 研究設計與實施 30 第一節 研究架構 30 第二節 研究對象 32 第三節 研究流程 33 第四節 研究工具 34 第五節 資料分析 38 第五章 研究結果與分析 39 第一節 學習成就 40 第二節 學習動機 42 第三節 合作學習傾向 46 第四節 創造力自我效能 50 第五節 認知負荷 54 第六節 行為分析 57 第六章 結論與建議 67 第一節 研究結果與討論 67 第二節 研究限制 72 第三節 未來研究建議 72 參考文獻 74 一、中文部份 74 二、英文文獻 74 附 錄 79 附錄1-學習成就測驗卷(前測) 79 附錄2-學習成就測驗卷(後測) 89 附錄3-學習動機量表 99 附錄4-合作學習傾向 100 附錄5-創造力自我效能 101 附錄6-認知負荷 102

    一、中文部份
    王金玉 (2015)。運用桌上遊戲提昇小六學童英語拼字能力之效益。 國立臺北教育大學兒童英語教育學系英語教育碩士班學位論文,1-101。
    周家興 (2013)。結合擴增實境與桌上遊戲對台灣地名學習之影響。 國立臺北教育大學數位科技設計學系 (含玩具與遊戲設計碩士班) 學位論文,1-155。
    林央侖 (2010)。企業管理訓練桌上遊戲教材評選指標之研究。 臺灣師範大學科技應用與人力資源發展學系學位論文,1-137。
    張晟 (2017)。數學科算術桌遊設計應用於國小低年級課程之研究。 國立臺北教育大學數位科技設計學系 (含玩具與遊戲設計碩士班) 學位論文,1-55。
    張堙森 (2017)。數位桌遊對原住民國小高年級學生臺灣歷史學習成效之設計本位研究-以清領時期為例。 國立臺北教育大學課程與教學研究所學位論文,1-122。
    郭宜琳 (2015)。英語桌遊對英語學習成效與英語學習興趣之關聯性研究。 健行科技大學企業管理系碩士班學位論文,1-62。
    陳彙芳、范懿文 (2000)。認知負荷對多媒體電腦輔助學習成效之影響研究。 資訊管理研究, 國立中央大學,2(2),45-60。
    黑豬 (2012)。就是愛玩桌遊。 臺北市: 高寶國際。
    魏珮君 (2017)。桌上遊戲融入差異化教學對國小英語學習成就與動機研究。 淡江大學教育科技學系數位學習在職專班學位論文,1-115。
    二、英文文獻
    Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
    Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach. International Journal of Child-computer Interaction, 19, 30-55.
    Alvarez, V. (2017). Engaging Students in the Library through Tabletop Gaming. Knowledge Quest, 45(4), 40-49.
    Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48-54.
    Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Paper presented at the Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada.
    Bujak, K. R., Radu, I., Catrambone, R., Macintyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
    Cesar, E., Cortés, A., Espinosa, A., Margalef, T., Moure, J. C., Sikora, A., & Suppi, R. (2017). Introducing computational thinking, parallel programming and performance engineering in interdisciplinary studies. Journal of Parallel and Distributed Computing, 105, 116-126.
    Chen, S. Y., & Huang, P. R. (2013). The comparisons of the influences of prior knowledge on two game-based learning systems. Computers & Education, 68, 177-186.
    Cheng, K.-H., & Tsai, C.-C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
    Choi, S.-J., Kwon, T.-H., Im, H., Moon, D.-I., Baek, D. J., Seol, M.-L., . . . Choi, Y.-K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces, 3(12), 4552-4556.
    Choi, S.-J., Kwon, T.-H., Im, H., Moon, D.-I., Baek, D. J., Seol, M.-L., . . . Choi, Y.-K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces, 3(12), 4552-4556.
    Clark, A. M., & Clark, M. T. (2016). Pokémon Go and research: Qualitative, mixed methods research, and the supercomplexity of interventions: SAGE Publications Sage CA: Los Angeles, CA.
    Coil, D. A., Ettinger, C. L., & Eisen, J. A. (2017). Gut check: The evolution of an educational board game. PLoS biology, 15(4), e2001984.
    Crews, A. (2011). Getting teachers on" Board". Knowledge Quest, 40(1), 10.
    Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying Computational Thinking for Non–Computer Scientists (work in progress).(2010).
    El Sayed, N. A., Zayed, H. H., & Sharawy, M. I. (2010). ARSC: Augmented reality student card. Paper presented at the Computer Engineering Conference (ICENCO), 2010 International.
    Frank, J. A., & Kapila, V. (2017). Mixed-reality learning environments: Integrating mobile interfaces with laboratory test-beds. Computers & Education, 110, 88-104.
    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43.
    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43.
    Grover, S., & Pea, R. J. E. R. (2013). Computational thinking in K–12: A review of the state of the field. 42(1), 38-43.
    Hinebaugh, J. P. (2009). A board game education. R&L Education.
    Hwang, G. J., Shi, Y. R., & Chu, H. C. (2011). A concept map approach to developing collaborative Mindtools for context‐aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778-789.
    Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students' learning performance in natural science courses. Computers & Education, 69, 121-130.
    Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
    Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.
    ISTE, C. (2011). Computational Thinking in K–12 Education leadership toolkit.
    Johnson, L., Smith, R., Levine, A., & Haywood, K. (2010). The Horizon Report: 2010 Australia-New Zealand Edition: ERIC.
    Kirriemuir, J., & McFarlane, A. (2004). Literature review in games and learning.
    Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students' conception of collaboration, communication, complex problem–solving, meta–cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8(3-4), 276-291.
    Lin, C.-H., Zhi-Feng Liu, E., Chen, Y.-L., Liou, P.-Y., Chang, M., Wu, C.-H., & Yuan, S.-M. (2013). Game-based remedial instruction in mastery learning for upper-primary school students. Journal of Educational Technology & Society, 16(2).
    Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a computational thinking-enabled engineering workforce. Computer Applications in Engineering Education, 25(1), 62-78.
    Molla, E., & Lepetit, V. (2010). Augmented reality for board games. Paper presented at the Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International Symposium on.
    Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12.
    Parlett, D. S. (1999). The Oxford history of board games. Oxford University Press, USA.
    Petsche, J. (2011). Engage and excite students with educational games. Knowledge Quest, 40(1), 42-44.
    Powell, K. C., & Kalina, C. J. (2009). Cognitive and social constructivism: Developing tools for an effective classroom. Education, 130, 241–250.
    Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low‐income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375-394.
    Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low‐income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375-394.
    Sánchez-Prieto, J. C., Olmos-Migueláñez, S., & García-Peñalvo, F. J. (2017). MLearning and pre-service teachers: An assessment of the behavioral intention using an expanded TAM model. Computers in Human Behavior, 72, 644-654.
    Schreiber, L. M., & Valle, B. E. (2013). Social constructivist teaching strategies in the small group classroom. Small Group Research, 44(4), 395-411.
    Sung, W., Ahn, J., Kai, S. M., Choi, A., & Black, J. B. (2016). Incorporating Touch-Based Tablets into Classroom Activities: Fostering Children's Computational Thinking through iPad Integrated Instruction Handbook of research on mobile learning in contemporary classrooms (pp. 378-406): IGI Global.
    Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management journal, 45(6), 1137-1148.
    Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education through problem-based game projects with Scratch. Computers & Education, 120, 64-74.
    Turel, Y. K., & Sanal, S. O. (2018). The effects of an ARCS based e-book on student's achievement, motivation and anxiety. Computers & Education, 127, 130-140.
    Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference‐matching on flow experience and programming performance in game‐based learning. Innovations in Education and Teaching International, 47(1), 39-52.
    Wang, S.-L., & Hwang, G.-J. (2012). The role of collective efficacy, cognitive quality, and task cohesion in computer-supported collaborative learning (CSCL). Computers & Education, 58(2), 679-687.
    Wang, Y.-H. (2017). Exploring the effectiveness of integrating augmented reality-based materials to support writing activities. Computers & Education, 113, 162-176.
    Wing, J. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in Computing, 2014.
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

    下載圖示
    QR CODE