簡易檢索 / 詳目顯示

研究生: 廖俊筌
Liao, Chun-Chuan
論文名稱: 探討九年級學生閱讀二次函數文本的推論及提問對其推論的影響
指導教授: 楊凱琳
Yang, Kai-Lin
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 二次函數推論提問介入
論文種類: 學術論文
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討不同能力的九年級個案學生在閱讀二次函數文本時,學生的推論及提問對其推論的影響。
    本研究的個案為台北市公立國中的九年級的四位學生,分別屬於低閱讀能力與低數學先備知識(LRLM)、高閱讀能力與低數學先備知識(HRLM)、低閱讀能力與高數學先備知識(LRHM)、高閱讀能力與高數學先備知識(HRHM)四個群組。
    將訪談分為自行閱讀與提問介入兩個階段,先概略了解不同能力個案學生自行閱讀的理解情形,再分別探討學生在兩個階段的推論類型、推論訊息來源與推論歷程,從中比較不同能力學生的推論情形,並匯整提問介入對不同能力學生的影響。研究發現主要有二:
    一、在自行閱讀時,發現:
    四位個案產生的推論類型種類差不多,主要差別在於高數學先備知識的學生能推論數學性質與關係,達成較好的理解,低數學先備知識的學生多指出數學物件與程序,對數學性質與關係沒有或僅有部分理解。
    HRHM學生能比較相關訊息,適當統整解釋關鍵訊息,並產生相關數學性質和關係的推論,以及較多的前向推論。LRHM學生較仔細閱讀文本,圈選重點,會基於文本訊息產生數學性質與關係的推論,但統整解釋關鍵訊息的能力較HRHM學生差,也比HRHM學生較少產生前向推論。HRLM學生能推論文本內容的大意,但會以不完整的敘述指稱數學物件或程序,能連接遠程文本訊息,但只關注訊息是否曾經出現,而不是關心數學性質或關係。LRLM學生只能照文本閱讀來指稱數學物件或程序,未能實際理解數學性質與關係。
    二、提問介入階段,發現:
    提問介入對個案學生閱讀行為的影響有:1.讓學生重新注意文本訊息,2.預測後提問,3.未有預測的提問。
    對推論的影響有:1. 只有HRHM學生在解釋性指稱推論提問下,會產生前向推論。2. LRHM學生對字詞字義敏銳度較低,可能會因句子長度,只擷取部分訊息,出現錯誤的解釋性指稱推論。3. 解釋性指稱推論提問會引導LRLM學生產生較多比例的擷取性指稱推論。
    對理解的影響有:1. 提升低數學先備知識學生對二次函數定義的理解。2.促進HRHM學生察覺與監控自我理解狀態。3. 除了LRLM學生之外,解釋性指稱推論提問都有助於促進學生的閱讀理解。

    目次 摘要 i 目次 iii 表次 iv 圖次 v 第一章 緒論 1 第一節 研究動機 1 第二節、研究問題 2 第三節、名詞界定 3 第二章、文獻探討 5 第一節、閱讀理解的過程與影響閱讀理解的因素 5 第二節、閱讀推論的訊息來源與類型 8 第三節、二次函數常見的錯誤類型 14 第四節、提問對學生閱讀的影響 18 第三章、研究方法 21 第一節、研究樣本 21 第二節、研究流程 23 第三節、研究工具 27 第四節、資料分析 45 第四章、研究發現 51 第一節、未有提問介入前,不同能力的個案學生的理解狀況。 51 第二節、依文本區塊探討學生在自行閱讀時,所產生的推論類型、訊息來源與歷程。 62 第三節、依提問順序探討學生在提問介入時,所產生的推論類型、訊息來源與歷程。 72 第四節、統整提問介入對不同個案學生的影響差異。 84 第五章、結論與建議 93 第一節、結論 93 第二節、建議 97 參考文獻 100

    一、中文文獻
    97年國民中小學九年一貫課程綱要。(http://teach.eje.edu.tw/9CC2/9cc_97.php)
    何秉鈞(民97)。高雄地區高一學生求解二次函數極值之錯誤類型分析。
    宋啟玉(民100)。高雄地區國中三年級學生二次函數求極值解題歷程之分析。
    胡惠茹(民97)。不同二次函數表徵問題對國三學生解題影響之探究。
    徐敏媛(民100)。國中生在二次函數概念上的主要錯誤類型及其補救教學之研究。
    楊雅明(民99)。雲林地區國三學生在「二次函數求極值」單元解題歷程之分析研究。
    鄭家禎(民101)。二階段評量對國中三年級數學學習診斷力之研究-以二次函數為例。
    蔣德仁(民102)。PISA國際學生能力評量計畫概論。五南。
    臺灣PISA國家研究中心。臺灣PISA2009精簡報告。(http://pisa.nutn.edu.tw)。

    二、英文文獻
    Adams, A., Carnine, D., & Gersten, R. (1982). Instructional strategies for studying content area texts in the intermediate grades. Reading Research Quarterly, 18, 27-55.
    Anderson, R., & Biddle, W. (1975). On asking people questions about what they are reading. In G. H. Bower (Ed.). The Psychology of Learning and Motivation, (pp. 90-132). New York: Academic press.
    Artzt, A. F. (2002). Becoming a reflective mathematics teacher. Lawrence Erlbaum Associates, London.
    Cerand, R., Vidal-Abarca, E., Martinez, T., Gilabert, R., &Gil, L. (2009). Impact of question-answering task on search processes and reading comprehension. Learning and Instruction, 19, 13-27.
    Chin, C., Brown, D. E., &Bruce, C. B. (2002). Student-generated quesiton: a meaningful aspect of learning in science. Tnternational Journal of Science Education, 24(5), 521-549.
    Clarkson, Sandra Pryor; Williams, W. H.(1994). Are You Assessing Reading or Mathematics ? The Annual Meeting of the American Mathematics Association of Two-Year Colleges (tulas, OK, November, 1994).
    Davis, R. B., & Maher, C. A. (1990). What do we do when we learn mathematics? In R. B. Davis & C. A. Maher (Eds.), Constructivist views on the teaching and learning of mathematics (pp. 53-69). Reston, VA: NCTM.
    Davoudi, M. (2005). Inference generation skill and text comprehension. The Reading Matrix, 5, 106-126.
    Goldenberg, E. P. (1988). Mathematics, metaphors, and human factor: Mathematical, technical and pedagogical challenges in the educational use of graphical representation fo functions. Journal of Mathematical Behavior, 7, 135-173.
    Graesser, Singer &trabasso(1994). Constructing Inferences During Narrative Text Comprehension. Psychological Review, 1994, Vol, 101, No, 3, 371-395.
    Gunning, T. G. (1996). Creating reading instrunction for all children (2nd ed.). Ma: Allyn & Bacon.
    Holliday, W. G., & Benson, G. (1991). Enhancing learning using questions, adjunct to science charts. Journal of Research in Science Teaching, 28(6), 523-535.
    Ianvier, C. (1987). Translation processes in mathematics education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics, 27-31. Hillsdale, NJ: Lawrence Erlbaum.
    King, A. (1994). Guiding knowledge construction in the classroom: effect of teaching children how to question and how to explain. American Education Research Journal, 31(2), 338-368.
    Kirschner, P. A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning . Learning and Instruction, 12, 1-10.
    Kozminsky, E., & Kozminsky, L. (2001). How do general knowledge and reading strategies ability relate to reading comprehension of high school students at different educational levels. Journal of Research in reading , 24, 187-204.

    Leinhardt, G., Zaslavsky, O., Stein, M.K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
    Marlowe, C. E. (1986). Questioning and Peer Collaboration as Techniques for Thinking and Writing About Personality. Teaching of Psychology, 13(2), 75-77.
    Martino, A. M., & Maher, C. A. (1999). Teacher questioning to promote justification and generalization in Mathematics: What research practice has taught us. The Journal of Mathematics Behavior, 18(1), 53-78.
    Mason, J. (2000). Asking mathematical questions mathematically. International Journal of Mathematical Educational in Science and Technology, 31(1), 97-111.
    Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman, & J. S. Brown (Eds.), Intelligent tutoring ssytem. London:academic.
    National Council of Teachers of Mathematics. (2000). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
    National Council of teachers of Mathematics, (2009). Focus in High School Mathematics: Reasoning and Sense Making. Reston, VA: National council of Teachers of Mathematics.
    Oakhill, J. V., & Cain, K. (2003). The development of comprehension skills. In P. Bryant (Ed.), Handbook of children’s Literacy (pp. 155-180). The Netherlands: kluwer Academic Publisher.
    Olson, G. M., Duffy , S. A., & Mack, R. L. (1985). Quesionts-asking as a component of text comprehension. In A. C. Graesser and J. B. Black (Eds.). The Psychology of questions (pp. 219-226). Mahwah, New Jersey: Erlbaum.
    Perry, M., Vanderstoep, S., & Yu, S. (1993).Asking questions in first-grade mathematics classes: Potential influences on mathematical thought. Journal of Educational Psychology, 85(1), 31-40.
    Pilve Kangsepp(2011). Impact of Asking Support Questions on Grades 4 and 7 Students Reading Comprehension. Creative Education, Vol.2, No.4, 381-387.
    Pirie, S. E. B., & Kieren, T. E. (1992). Watching Sandy’s understanding growth. Journal of Mathematical Behavior, 11, 243-257.
    Pressley, M., Johnson, C. J., Symons, S., McGoldrick, J. A., & Kurita, J. A. (1989). Strategies that improve children’s memory and comprehension of text. The Elementray School Journal, 90, 3-32.
    Raphael, T. E. (1986). Teaching question answer relationships, revisited. Reading Teacher, 39(6), 516-522.
    Ronald C. Feldt, Rebeccca A. Feldt, & Kristine Kilburg. (2002). Acquisition, maintenance, and transfer of a questioning strategy in second and third grade students to learn from science textbooks.Reading Psychology, 23: 181-198.
    Schoenfeld, A. H. (1987). Learning: The microgenetic analysis of one student’s evolving understanding of a complex subject matter domain. To appear in Glaser, R. (E.d.). Advances in instructional Psychology, 4. Hillsdale, NJ: eribaum.
    van den Broek, P., Fletcher, C. R., & Risden, K. (1993). Investigations of inferential processes in reading: A theoretical and methodological integration. Discourse Processes, 16, 169–180.
    van den Broek, P. (1994). Comprehension and memory for narrative texts: Inferences and coherence. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistic s (pp. 539-588). San Diego: Academic Press.
    Van den Broek, P., Rohleder, L., &narvaez, D. (1994). Cognitive processes in the comprehension of literary texts. In H. van Oostendorp and R. Zwaan (Eds.), Naturalistic Text Comprehension (pp. 229-246). Norwood, New Jersey: Ablex Publishing Corp.
    van den Broek, P., & Kremer, K. E. (2000). The mind in action: What it means to comprehend during reading. In B. M. Taylor, M. F. Graves, & P. van den Broek (Eds.) Reading for meaning: Fostering comprehension in the middle grades (pp. 1-31). Newark, DE: International Reading Association.
    Van den Broek, P., Tzeng, Y., Risden, K., & Trabasso, T. (2001). Inferential questioning: Effect on comprehension of narrative text as a function of grade and timing. Journal of educational Psychology, 9, 521-529.
    Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.
    Zaslavsky, O. (1987). Conceptual obstacles in the learning of quadratic function. Focus on Learning Problems in Mathematics, 19(1), 20-25.

    無法下載圖示 本全文未授權公開
    QR CODE