研究生: |
廖俊筌 Liao, Chun-Chuan |
---|---|
論文名稱: |
探討九年級學生閱讀二次函數文本的推論及提問對其推論的影響 |
指導教授: |
楊凱琳
Yang, Kai-Lin |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 二次函數 、推論 、提問介入 |
論文種類: | 學術論文 |
相關次數: | 點閱:169 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討不同能力的九年級個案學生在閱讀二次函數文本時,學生的推論及提問對其推論的影響。
本研究的個案為台北市公立國中的九年級的四位學生,分別屬於低閱讀能力與低數學先備知識(LRLM)、高閱讀能力與低數學先備知識(HRLM)、低閱讀能力與高數學先備知識(LRHM)、高閱讀能力與高數學先備知識(HRHM)四個群組。
將訪談分為自行閱讀與提問介入兩個階段,先概略了解不同能力個案學生自行閱讀的理解情形,再分別探討學生在兩個階段的推論類型、推論訊息來源與推論歷程,從中比較不同能力學生的推論情形,並匯整提問介入對不同能力學生的影響。研究發現主要有二:
一、在自行閱讀時,發現:
四位個案產生的推論類型種類差不多,主要差別在於高數學先備知識的學生能推論數學性質與關係,達成較好的理解,低數學先備知識的學生多指出數學物件與程序,對數學性質與關係沒有或僅有部分理解。
HRHM學生能比較相關訊息,適當統整解釋關鍵訊息,並產生相關數學性質和關係的推論,以及較多的前向推論。LRHM學生較仔細閱讀文本,圈選重點,會基於文本訊息產生數學性質與關係的推論,但統整解釋關鍵訊息的能力較HRHM學生差,也比HRHM學生較少產生前向推論。HRLM學生能推論文本內容的大意,但會以不完整的敘述指稱數學物件或程序,能連接遠程文本訊息,但只關注訊息是否曾經出現,而不是關心數學性質或關係。LRLM學生只能照文本閱讀來指稱數學物件或程序,未能實際理解數學性質與關係。
二、提問介入階段,發現:
提問介入對個案學生閱讀行為的影響有:1.讓學生重新注意文本訊息,2.預測後提問,3.未有預測的提問。
對推論的影響有:1. 只有HRHM學生在解釋性指稱推論提問下,會產生前向推論。2. LRHM學生對字詞字義敏銳度較低,可能會因句子長度,只擷取部分訊息,出現錯誤的解釋性指稱推論。3. 解釋性指稱推論提問會引導LRLM學生產生較多比例的擷取性指稱推論。
對理解的影響有:1. 提升低數學先備知識學生對二次函數定義的理解。2.促進HRHM學生察覺與監控自我理解狀態。3. 除了LRLM學生之外,解釋性指稱推論提問都有助於促進學生的閱讀理解。
一、中文文獻
97年國民中小學九年一貫課程綱要。(http://teach.eje.edu.tw/9CC2/9cc_97.php)
何秉鈞(民97)。高雄地區高一學生求解二次函數極值之錯誤類型分析。
宋啟玉(民100)。高雄地區國中三年級學生二次函數求極值解題歷程之分析。
胡惠茹(民97)。不同二次函數表徵問題對國三學生解題影響之探究。
徐敏媛(民100)。國中生在二次函數概念上的主要錯誤類型及其補救教學之研究。
楊雅明(民99)。雲林地區國三學生在「二次函數求極值」單元解題歷程之分析研究。
鄭家禎(民101)。二階段評量對國中三年級數學學習診斷力之研究-以二次函數為例。
蔣德仁(民102)。PISA國際學生能力評量計畫概論。五南。
臺灣PISA國家研究中心。臺灣PISA2009精簡報告。(http://pisa.nutn.edu.tw)。
二、英文文獻
Adams, A., Carnine, D., & Gersten, R. (1982). Instructional strategies for studying content area texts in the intermediate grades. Reading Research Quarterly, 18, 27-55.
Anderson, R., & Biddle, W. (1975). On asking people questions about what they are reading. In G. H. Bower (Ed.). The Psychology of Learning and Motivation, (pp. 90-132). New York: Academic press.
Artzt, A. F. (2002). Becoming a reflective mathematics teacher. Lawrence Erlbaum Associates, London.
Cerand, R., Vidal-Abarca, E., Martinez, T., Gilabert, R., &Gil, L. (2009). Impact of question-answering task on search processes and reading comprehension. Learning and Instruction, 19, 13-27.
Chin, C., Brown, D. E., &Bruce, C. B. (2002). Student-generated quesiton: a meaningful aspect of learning in science. Tnternational Journal of Science Education, 24(5), 521-549.
Clarkson, Sandra Pryor; Williams, W. H.(1994). Are You Assessing Reading or Mathematics ? The Annual Meeting of the American Mathematics Association of Two-Year Colleges (tulas, OK, November, 1994).
Davis, R. B., & Maher, C. A. (1990). What do we do when we learn mathematics? In R. B. Davis & C. A. Maher (Eds.), Constructivist views on the teaching and learning of mathematics (pp. 53-69). Reston, VA: NCTM.
Davoudi, M. (2005). Inference generation skill and text comprehension. The Reading Matrix, 5, 106-126.
Goldenberg, E. P. (1988). Mathematics, metaphors, and human factor: Mathematical, technical and pedagogical challenges in the educational use of graphical representation fo functions. Journal of Mathematical Behavior, 7, 135-173.
Graesser, Singer &trabasso(1994). Constructing Inferences During Narrative Text Comprehension. Psychological Review, 1994, Vol, 101, No, 3, 371-395.
Gunning, T. G. (1996). Creating reading instrunction for all children (2nd ed.). Ma: Allyn & Bacon.
Holliday, W. G., & Benson, G. (1991). Enhancing learning using questions, adjunct to science charts. Journal of Research in Science Teaching, 28(6), 523-535.
Ianvier, C. (1987). Translation processes in mathematics education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics, 27-31. Hillsdale, NJ: Lawrence Erlbaum.
King, A. (1994). Guiding knowledge construction in the classroom: effect of teaching children how to question and how to explain. American Education Research Journal, 31(2), 338-368.
Kirschner, P. A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning . Learning and Instruction, 12, 1-10.
Kozminsky, E., & Kozminsky, L. (2001). How do general knowledge and reading strategies ability relate to reading comprehension of high school students at different educational levels. Journal of Research in reading , 24, 187-204.
Leinhardt, G., Zaslavsky, O., Stein, M.K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
Marlowe, C. E. (1986). Questioning and Peer Collaboration as Techniques for Thinking and Writing About Personality. Teaching of Psychology, 13(2), 75-77.
Martino, A. M., & Maher, C. A. (1999). Teacher questioning to promote justification and generalization in Mathematics: What research practice has taught us. The Journal of Mathematics Behavior, 18(1), 53-78.
Mason, J. (2000). Asking mathematical questions mathematically. International Journal of Mathematical Educational in Science and Technology, 31(1), 97-111.
Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman, & J. S. Brown (Eds.), Intelligent tutoring ssytem. London:academic.
National Council of Teachers of Mathematics. (2000). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
National Council of teachers of Mathematics, (2009). Focus in High School Mathematics: Reasoning and Sense Making. Reston, VA: National council of Teachers of Mathematics.
Oakhill, J. V., & Cain, K. (2003). The development of comprehension skills. In P. Bryant (Ed.), Handbook of children’s Literacy (pp. 155-180). The Netherlands: kluwer Academic Publisher.
Olson, G. M., Duffy , S. A., & Mack, R. L. (1985). Quesionts-asking as a component of text comprehension. In A. C. Graesser and J. B. Black (Eds.). The Psychology of questions (pp. 219-226). Mahwah, New Jersey: Erlbaum.
Perry, M., Vanderstoep, S., & Yu, S. (1993).Asking questions in first-grade mathematics classes: Potential influences on mathematical thought. Journal of Educational Psychology, 85(1), 31-40.
Pilve Kangsepp(2011). Impact of Asking Support Questions on Grades 4 and 7 Students Reading Comprehension. Creative Education, Vol.2, No.4, 381-387.
Pirie, S. E. B., & Kieren, T. E. (1992). Watching Sandy’s understanding growth. Journal of Mathematical Behavior, 11, 243-257.
Pressley, M., Johnson, C. J., Symons, S., McGoldrick, J. A., & Kurita, J. A. (1989). Strategies that improve children’s memory and comprehension of text. The Elementray School Journal, 90, 3-32.
Raphael, T. E. (1986). Teaching question answer relationships, revisited. Reading Teacher, 39(6), 516-522.
Ronald C. Feldt, Rebeccca A. Feldt, & Kristine Kilburg. (2002). Acquisition, maintenance, and transfer of a questioning strategy in second and third grade students to learn from science textbooks.Reading Psychology, 23: 181-198.
Schoenfeld, A. H. (1987). Learning: The microgenetic analysis of one student’s evolving understanding of a complex subject matter domain. To appear in Glaser, R. (E.d.). Advances in instructional Psychology, 4. Hillsdale, NJ: eribaum.
van den Broek, P., Fletcher, C. R., & Risden, K. (1993). Investigations of inferential processes in reading: A theoretical and methodological integration. Discourse Processes, 16, 169–180.
van den Broek, P. (1994). Comprehension and memory for narrative texts: Inferences and coherence. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistic s (pp. 539-588). San Diego: Academic Press.
Van den Broek, P., Rohleder, L., &narvaez, D. (1994). Cognitive processes in the comprehension of literary texts. In H. van Oostendorp and R. Zwaan (Eds.), Naturalistic Text Comprehension (pp. 229-246). Norwood, New Jersey: Ablex Publishing Corp.
van den Broek, P., & Kremer, K. E. (2000). The mind in action: What it means to comprehend during reading. In B. M. Taylor, M. F. Graves, & P. van den Broek (Eds.) Reading for meaning: Fostering comprehension in the middle grades (pp. 1-31). Newark, DE: International Reading Association.
Van den Broek, P., Tzeng, Y., Risden, K., & Trabasso, T. (2001). Inferential questioning: Effect on comprehension of narrative text as a function of grade and timing. Journal of educational Psychology, 9, 521-529.
Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.
Zaslavsky, O. (1987). Conceptual obstacles in the learning of quadratic function. Focus on Learning Problems in Mathematics, 19(1), 20-25.