研究生: |
林思汝 Szu-Ju Lin |
---|---|
論文名稱: |
擴增實境遊戲式學習與編碼策略對國小學生槓桿原理學習之影響 The Effects of Augmented Reality on Game-based Learning and Encoding Strategy in the Learning of Lever Principle for Elementary Students |
指導教授: |
陳明溥
Chen, Ming-Puu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 槓桿原理 、遊戲式學習 、擴增實境 、數位模擬 、編碼策略 |
英文關鍵詞: | lever principle, game-based learning, augmented reality, digital simulation, encoding strategy |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討不同學習環境與編碼策略對於國小中年級學習者在槓桿原理學習成效及自然科學習動機之影響。研究對象為四年級學生,樣本為台北市某國小111位學生,剔除未全程參與5人和極端值8人,有效樣本為98人。實驗教學活動為期四週,共計160分鐘。本研究採因子設計之準實驗研究,自變項包括學習環境與編碼策略,「學習環境」依據虛擬資訊結合觸覺感受或動畫模擬之互動差異,分為擴增實境和數位模擬;「編碼策略」依據力矩概念的編碼方式為圖像或文字之呈現差異,分為類比編碼和符號編碼。依變項包括「槓桿原理學習成效」及「自然科學習動機」。共變項為「先備知識」。
研究結果依槓桿原理學習成效與自然科學習動機兩個面向,綜合歸納如下:(1)學生使用「擴增實境遊戲」教材學習槓桿原理,學習成效優於使用「數位模擬遊戲」教材;而學生使用「類比編碼策略」教材學習槓桿原理,學習成效優於使用「符號編碼策略」教材;(2)學生運用學習環境與編碼策略學習槓桿原理皆可提升學習動機;特別是「擴增實境遊戲」和「類比編碼策略」之內在動機表現較佳,而「數位模擬遊戲」和「符號編碼策略」之外在動機表現較佳。
The purpose of this study was to investigate the effects of game-based learning environment and encoding strategy in the learning of lever principle for elementary students. A quasi-experimental research design was employed in the study and the participants were 98 fourth-grade elementary students. The independent variables were game-based learning environment (the augmented reality game vs. the digital simulation game) and encoding strategy (the analogy representation vs. the abstract representation). The dependent variables were learning performance in and motivation towards the lever principle learning activity.
The results revealed that (a) the augmented reality game was able to facilitate the performance of understanding with learners and was better than the digital simulation game. On the other hand, the analogy representation could improve the performance in application and was better than the abstract representation. (b) Both the game-based learning environment and encoding strategy had positive impacts on learners’ motivation. The augmented reality game and the analogy representation affected more on the intrinsic motivation. However, the digital simulation game and the abstract representation caused more effect on the extrinsic motivation.
中文部分
王美芬、熊召弟(1995)。國民小學自然科教材教法。臺北市:心理出版社。
李田英(民84)。國小三至五年級自然科學課程學習困難之教材分析。師大學報,40,75-508。
林秀美(1998)。電腦模擬在科技教育上之應用。教學科技與媒體,42,23-31。
張志銘(2003)。國小六年級學童槓桿迷思概念之二階層診斷研究(未出版之碩士論文)。國立臺北市立師範學院,台北市。
張春興(1985)。教育心理學-三元化取向的理論與實踐。臺北市:東華書局。
張意欣(2004)。學習槓桿原理對國小學童判斷簡單機械省力費力之影響(未出版之碩士論文)。國立臺灣師範大學,台北市。
張霄亭(譯) (2004)。教材設計:原理與實務(原作者:W. R. Foshay, K. H. Silber, & M. B. Stelnicki)。臺北市:雙葉書廊。(原著出版年:2003)。
教育部(2008)。97年國民中小學九年一貫課程綱要。臺北市:教育部。
陳淑筠(民 91)。國內學生自然科學迷思概念研究之後設研究(未出版之碩士論文)。國立台東師範學院,台東市。
曾永祥、許瑛玿(2006)。線上課程對高二學生四季成因概念學習的影響。科學教育學刊,14(3),257-282。
游光純(2002)。利用臨床晤談探究國民小學高年級學童對槓桿概念的另有想法(未出版之碩士論文)。國立台北師範學院,台北市。
黃竹坤(2001)。應用模擬動畫於國中理化輔助教學之研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
黃福坤(2006)。透過物理模擬動畫進行物理教學與學習-介紹簡易模擬動畫設計環境Easy Java Simulation。物理雙月刊,28,536-543。
樊雪春(1999)。學生科學迷思概念的法則分析與建構教學取向教學法之實驗效果研究(未出版之博士論文)。國立臺灣師範大學,台北市。
鄭景文(2008)。國小六年級學童「力與槓桿」概念認知之研究(未出版之碩士論文)。臺北市立教育大學,台北市。
鄭靜瑜(2002)。資訊科技融入引導發現式教學對國小五年級不同能力學生學習成就與學習保留之研究-以『槓桿』單元為例(未出版之碩士論文)。屏東師範學院,屏東市。
賴明照(2003)。國小高年級學童槓桿迷思概念之研究(未出版之碩士論文)。國立臺中師範學院,台中市。
賴俊安(2012)。問題導向遊戲教學策略輔助國小自然槓桿原理課程學習效益之研究(未出版之碩士論文)。國立臺中教育大學,台中市。
蘇育任(民82)。「兒童的科學」研究之沿革及其對國小自然科教學之啟示。國立臺中師範學院初等教育研究所研究集刊,1,91-104。
英文部分
Ainsworth, S. (1999). The functions of multiple representations. Computers and Education, 33, 131-152.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198.
Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and development. Boston : Allyn and Bacon.
Azuma, R. T. (1997). A survey of augmented reality. Teleoperators and Virtual Environments, 6(4), 355-385.
Baddeley, A. D. (1986). Working memory. Oxford, England: Clarendon Press.
Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12.
Billinghurst, M., & Dunser, A. (2012). Augmented Reality in the Classroom. Computer, 45(7), 56-63.
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387-398.
Bork, C. J., & King, K. (1998). Computer conferencing and collaborative writing tool starting a dialogue about student dialogue. In C. J. Bork & K. King (Eds.), Electronic collaborators: Learner-centered technologies for literacy apprenticeship and discourse (pp. 3-23). Mahwah, NJ: Lawrence Erlbaum.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.
Chang, C. Y. (2005). Taiwanese science and life technology curriculum standards and earth systems education. International Journal of Science Education, 27(5), 625-638.
Charles, D., & Mcalister, M. (2004). Integrating ideals about invisible playgrounds from play theory into online educational digital games. In M. Rautherberg (Ed.), ICEC 2004 (pp. 598-601). NY: Springer Berlin Heidelberg.
Clark, J. M. & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149-170.
Collette, A. T. & Chiapetta, E. L. (1994). Science instruction in the middle and secondary schools (3rd ed.). NY: Maxwell Macmillan.
Connolly, T. M., Stansfield, M., & Hainey, T. (2007). An application of games‐based learning within software engineering. British Journal of Educational Technology, 38(3), 416-428.
de Freitas, S., & Oliver, M. (2006). How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Computers & Education, 46(3), 249-264.
Demircioglu, H., Demircioglu, G., & Calik, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: The case for the Periodic Table. Chemistry Education Research and Practice, 10(3), 241-249.
Dewey, J. (1983). Human nature and conduct. In J. A. Boydston (Ed.). The middle works of John Dewey (vol.14, pp.1899-1924). Carbondale and edwardsville, IL: Southern Illinois University.
Driver, R., Guesne, E., & Tiberghien, A. (1985). Children's ideas in science. Milton Keynes: Open University Press.
Duit, R., Goldberg, F., & Nidderer, H. (1991). Research in physics learning: Theoretical issues and empirical studies. Kiel: IPN-University of Kiel.
Egenfeldt-Nielsen, S. (2007). Third generation educational use of computer games. Journal of Educational Multimedia and Hypermedia, 16(3), 263-281.
El Sayed, N. A., Zayed, H. H., & Sharawy, M. I. (2011). ARSC: Augmented reality student card. Computers & Education, 56(4), 1045-1061.
Frasca, G. (2004). Videogames of the oppressed. First person: New media as story, performance, and game, 85-94.
Gagné, R. M. (1985). The conditions of learning and theory of instruction (4th). New York, N. Y.: Holt, Rinehart and Winston.
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441-467.
Gee, J. P. (2003). What video games have to teach us about learning and literacy. NewYork, NY: Palgrave Macmillan.
Goldman, S. (2003). Learning in complex domains: When and why do multiple representations help? Learning and Instruction, 13, 239-244.
Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The Journal of the Learning Sciences,14(1), 69-110.
Gros, B. (2007). Digital games in education: The design of games-based learning environments. Journal of Research on Technology in Education, 40(1), 23-38.
Heinich, R., Molenda, M., Russell, J. D., & Smaldino, S. E. (1999). Instructional media and technologies for learning. Upper Saddle River, NJ: Merrill/Prentice Hall.
Hickey, D. T., Ingram-Goble, A. A., & Jameson, E. M. (2009). Designing assessments and assessing designs in virtual educational environments.Journal of Science Education and Technology, 18(2), 187-208.
Holland, W., Jenkins, H., & Squire, K. (2003). Theory by design. In M. J. P. Wolf & B. Perron (Eds.), The video game theory reader (pp.25-46). New York: Routledge.
Hsiao, K. F., Chen, N. S., & Huang, S. Y. (2012). Learning while exercising for science education in augmented reality among adolescents. Interactive Learning Environments, 20(4), 331-349.
Inal, Y., & Cagiltay, K. (2007). Flow experiences of children in an interactive social game environment. British Journal of Educational Technology, 38(3), 455-464.
Jimoyiannis, A. & Komis, V. (2001). Computer simulations in physics teaching and learning: A case study on students' understanding of trajectory motion. Computers & Education, 36(1), 183–204.
Johnson, A. M., Butcher, K. R., Ozogul, G., & Reisslein, M. (2013). Learning from abstract and contextualized representations: The effect of verbal guidance. Computers in Human Behavior, 29(6), 2239-2247.
Johnson, A. M., Reisslein, J., & Reisslein, M. (2014). Representation sequencing in computer-based engineering education. Computers & Education,72, 249-261.
Kearney, P. R., & Pivec, M. (2007). Immersed and how? That is the question. Game in Action, 12.
Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427-443.
Kickmeier‐Rust, M. D., & Albert, D. (2010). Micro‐adaptivity: protecting immersion in didactically adaptive digital educational games. Journal of Computer Assisted Learning, 26(2), 95-105.
Kiili, K. & Lainema, T. (2006). Evaluations of an experiential gaming model: The realgame case. In E. Pearson & P. Bohman (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2006 (pp. 2343-2350). Chesapeake, VA: AACE.
Kiili, K. (2005). Content creation challenges and flow experience in educational games: The IT-Emperor case. The Internet and Higher Education, 8(3), 183-198.
Kipper, G., & Rampolla, J. (2013). Augmented reality: An emerging technologies guide to AR. Retrieved from
http://www.sciencedirect.com/science/book/9781597497336.
Klausmeier, H. J. (1992). Concept learning and concept teaching. Educational Psychologist, 27(3), 267-286.
Klopfer, E., & Squire, K. (2008). Environmental detectives - the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203-228.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. NJ: Prentice-Hall.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100.
Lee, J. (1999). Effectiveness of Computer-based instruction simulation: A meta-analysis. International Journal of Instructional Media, 26(1), 71-85.
Lepper, M. R., & Malone, T. W. (1987). Intrinsic motivation and instructional effectiveness in computer-based education. Aptitude, Learning, and Instruction, 3, 255-286.
Lewin, K., Lippitt, R., & White, R. K. (1939). Patterns of aggressive behavior in experimentally created “social climates”. The Journal of Social Psychology, 10(2), 269-299.
Liu, T. Y., Tan, T. H., & Chu, Y. L. (2009). Outdoor natural science learning with an RFID-supported immersive ubiquitous learning environment. Educational Technology & Society, 12(4), 161-175.
Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 5(4), 333-369.
Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York, NY: Cambridge University Press.
Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83, 484-490.
Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312–320.
McGinn, M. K., & Roth, W. M. (1998). Assessing students’ understanding about levers: better test instruments are not enough. International Journal of Science Education, 20(7), 813-832.
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented reality: A class of displays on the reality-virtuality continuum. Proceeding of SPIE Conference Telemanipulator and Telepresence Technologies, 2351(34), 282-292.
Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91(2), 358-368.
O’Neil, H. F., Wainess, R., & Baker, E. L. (2005). Classification of learning outcomes: Evidence from the computer games literature. The Curriculum Journal, 16(4), 455-474.
Paivio, A. (1986). Mental Representations. New York: Oxford University Press.
Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Pivec, M., & Kearney, P. (2007). Games for learning and learning from games. Organizacija, 40(6).
Prensky, M. (2001). Digital natives, digital immigrants part 1. On the horizon, 9(5), 1-6.
Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21-21.
Provenzo Jr, E. F. (1992). The Video Generation. American School Board Journal, 179(3), 29-32.
Randel, J., Morris, B., Wetzel, C. D. & Whitehall, B. (1992). The effectiveness of games for educational purposes: a review of recent research. Simulation & Gaming, 23(3), 261–276.
Rastegarpour, H., & Marashi, P. (2012). The effect of card games and computer games on learning of chemistry concepts. Social and Behavioral Sciences,31, 597-601.
Ricci, K. E., Salas, E., & Cannon-Bowers, J. A. (1996). Do computer-based games facilitate knowledge acquisition and retention? Military Psychology, 8(4), 295.
Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games. Educational Technology Research and Development, 44(2), 43-58.
Roblyer, M. D. (2003). Integrating educational technology into teaching. Upper Saddle River, NJ: Merrill Prentice Hall.
Roth, W. M. (1991). The development of reasoning on the balance beam.Journal of Research in Science Teaching, 28(7), 631-645.
Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.
Salen, K., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. MIT press.
Schmitz, B., Specht, M., & Klemke, R. (2012). An analysis of the educational potential of augmented reality games for learning. In M. Specht, J. Multisilta, & M. Sharples (Eds.), Proceedings of the 11th World Conference on Mobile and Contextual Learning 2012 (pp. 140-147). Aachen, Germany: CEUR Workshop Proceedings. Retrieved from http://hdl.handle.net/1820/4790
Schroeder, S., Richter, T., McElvany, N., Hachfeld, A., Baumert, J., Schnotz, W., Horz, H., & Ullrich, M. (2011). Teachers’ beliefs, instructional behaviors, and students’ engagement in learning from texts with instructional pictures. Learning and Instruction, 21, 403–415.
Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13, 227-237.
Siegler, R. S. (1976). Three aspects of cognitive development. Cognitive Psychology, 8(4), 481-520.
Smith, E. L., Blakeslee, T. D., & Anderson, C. W. (1993). Teaching strategies associated with conceptual change learning in science. Journal of Research in Science Teaching, 30(2), 111-126.
Squire, K. (2003). Video games in education. International Journal of Intelligent Simulations and Gaming (2)1.
Squire, K. D. (2006). From content to context: Video games as designed experiences. Educational Researcher, 35(8), 19-29.
Stephan, J. (1994). Targeting students science misconceptions: Physical science activities using the conceptual change model. Riverview, Florida: The Idea Factory.
Tabachnick, B. G., &; Fidell, L. S. (2006). Using multivariate statistics (5th Ed.). PIE: Allyn and Bacon.
Treagust, D. F. (1996). Improving Teaching and Learning in Science and Mathematics. Teachers College Press, Teachers College, Columbia University, 1234 Amsterdam Avenue, NY 10027.
Tuan, H. L., Chin, C. C., Tsai, C. C., & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3(4), 541-566.
Van Eck, R. (2007). Six ideas in search of a discipline. In M. Spector, N. Seel, and K. Morgan (Eds.), The educational design and use of computer simulation games (pp. 31–60). Boston, MA: Sense.
Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference-matching on flow experience and programming performance in game-based learning. Innovations in Education and Teaching International, 47(1), 39-52.
Winn, W., & Solomon, C. (1993). The effect of spatial arrangement of simple diagrams on the interpretation of English and nonsense sentences. Educational Technology Research and Development, 41(1), 29–41.
Yager, R. E. (1993). Science technology society as reform. School Science and Mathematics, 93(3), 145-151.
Yuen, S., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange, 4(1), 119-140.