簡易檢索 / 詳目顯示

研究生: 謝佳瞜
Carol Seah
論文名稱: 台灣三種蝙蝠之出生後神經元新生
Postnatal Neurogenesis in Three Species of Bats in Taiwan
指導教授: 王慈蔚
Wang, Tsu-Wei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 61
中文關鍵詞: 出生後神經元新生嗅球海馬迴齒狀迴高頭蝠東亞摺翅蝠台灣葉鼻蝠Scotophilus kuhliiasMiniopterus schreibersii fuliginosusHipposideros armiger terasensis
英文關鍵詞: postnatal neurogenesis, olfactory bulb, hippocampus, dentate gyrus, Chestnut bats, Japanese long-winged bats, Formosan leaf-nosed bats, Scotophilus kuhliias, Miniopterus schreibersii fuliginosus, Hipposideros armiger terasensis
論文種類: 學術論文
相關次數: 點閱:303下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在哺乳類動物大腦中終其一生都會有神經元新生。出生後的神經元新生發生在大腦的兩個區域,一為嗅球(OB)和另一為海馬迴的齒狀迴(DG)。位於側腦室旁的神經幹細胞會產生嗅球的神經元,而和齒狀迴內側的神經幹細胞則會產生齒狀迴神經元。新生的神經元要建立突觸連接,融入原有的神經迴路才會存活下來並且發揮它的功能。到目前為止,大部分出生後神經元新生的研究都集中在實驗室飼養的囓齒類動物,至於在野生動物大腦裡的出生後神經元新生並未完全闡明。蝙蝠是唯一會飛行且比囓齒類動物較為長壽的哺乳類動物。除此之外,蝙蝠是靠回聲定位系統辨別方向、辨認障礙物的大小材質以及捕抓獵物等。由於蝙蝠有特殊的空間辨識能力,加上台灣蝙蝠大腦內的出生後神經元新生到目前為止並沒有被研究過,因此本研究主要想探討台灣蝙蝠腦內的出生後神經元新生。我們使用胸苷類似物BrdU來標定新生的細胞和可以辨認與神經發育相關特定細胞群的抗體來研究台灣蝙蝠的出生後神經元新生的狀況。根據實驗結果,我們發現高頭蝠有與老鼠相似的嗅球神經元新生,但缺乏海馬迴神經元新生。而在摺翅蝠和葉鼻蝠則都有嗅球和海馬迴神經元新生。我們也使用了Sox2抗體標定在側腦室旁和齒狀迴內側的神經幹細胞。在這三種類的蝙蝠中都有神經幹細胞存在在這兩個腦區域。除此之外,我們也利用PSA-NCAM 和DCX抗體來標定神經母細胞。除了高頭蝠的齒狀迴之外,在側腦室旁和齒狀迴都可以偵測到神經母細胞的存在。另外,我們也使用了Ki67抗體標定在側腦室旁和齒狀迴正在細胞週期內的細胞。除了高頭蝠的齒狀迴以外,存在有神經幹細胞的腦區內都有發現正在進行細胞分裂的細胞。整體而言,蝙蝠的大腦神經元新生是一種種間特異的生理現象。

    Postnatal neurogenesis occurs in mammals throughout life. Neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricle and in the subgranular zone (SGZ) of the dentate gyrus (DG) give rise to new neurons in the olfactory bulb (OB) and DG, respectively. Newborn neurons can establish synaptic connections and integrate into the neural circuit. Most of the studies focus on molecular mechanisms of postnatal neurogenesis in captive animals, especially lab rodents. However, whether it also persists in wild mammals is not fully elucidated. Bats, the long-lived flying mammals, can use echolocation to navigate. The pattern of postnatal neurogenesis in various bat species in Taiwan has never been reported. We used the thymidine analog, bromodeoxyuridine (BrdU), and cell type-specific markers to study postnatal neurogenesis in bats in Taiwan. We found that postnatal neurogenesis persisted in the OB of Chestnut bats (Scotophilus kuhliias). However, postnatal hippocampal neurogenesis was completely absent in these bats. Postnatal neurogenesis in the OB and DG was found in Japanese long-winged bats (Miniopterus schreibersii fuliginosus) and Formosan leaf-nosed bats (Hipposideros armiger terasensis). Sox2+ NSCs were present in the SVZ and SGZ of these three species of bats. Furthermore, there were neuroblasts present in the SVZ and SGZ of these three species of bats except in the SGZ of Chestnut bats. Lastly, we found that proliferative precursor cells existed in the SVZ-OB pathway in these three species of bats. In the SGZ, proliferative precursor cells were only found in Japanese long-winged bats and Formosan leaf-nosed bats, but absent in Chestnut bats. Overall, there is species-specific pattern of postnatal neurogenesis in these species of bats.

    Chinese abstract ……………………………………………………….. 2 English abstract ………………………………………………………...4 Introduction …………………………………………………………….6 Postnatal neurogenesis Postnatal bulbar neurogenesis Postnatal hippocampal neurogenesis Bats Chestnut bats Japanese long-winged bats Formosan leaf-nosed bats Materials and Methods………………………………………….……..15 Experimental animals BrdU administrations Fixation and sectioning Immunohistochemistry Confocal microscopy and statistical analysis Results …………………………………………………………………19 Postnatal neurogenesis in Chestnut bats Postnatal neurogenesis in Japanese long-winged bats Postnatal neurogenesis in Formosan leaf-nosed bats Neural stem cells confirmed with Sox2 Neuroblasts confirmed with PSA-NCAM or DCX Proliferating cells confirmed with Ki67 Discussions …………………………………………………………… 26 Figures ……………………………………………………………. ….. 33 Tables ……………………………………………………………. ……48 References……………………………………………………………. . 57

    1 Liu, W. C., Gardner, T. J. & Nottebohm, F. Juvenile zebra finches can use multiple strategies to learn the same song. Proceedings of the National Academy of Sciences of the United States of America 101, 18177-18182, doi:10.1073/pnas.0408065101 (2004).
    2 Constance Scharff, J. R. K., Matthew Grossman, Jeffrey D. Macklis, and Fernando Nottebohm. Targeted Neuronal Death Affects Neuronal Replacement and Vocal Behavior in Adult Songbirds. Neuron 25, 481–492 (2000).
    3 Kirn, J. R. The relationship of neurogenesis and growth of brain regions to song learning. Brain Lang 115, 29-44, doi:10.1016/j.bandl.2009.09.006 (2010).
    4 Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660, doi:10.1016/j.cell.2008.01.033 (2008).
    5 Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687-702, doi:10.1016/j.neuron.2011.05.001 (2011).
    6 Kornack, D. R. & Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. USA 96 (1999).
    7 Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature 4 (1998).
    8 Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the Dentate Gyrus (1996).
    9 Knoth, R. et al. Murine Features of Neurogenesis in the Human Hippocampus across the Lifespan from 0 to 100 Years. Plusone 5, doi:10.1371/journal.pone.0008809.g002 (2010).
    10 Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proceedings of the National Academy of Sciences of the United States of America 97, 13883-13888, doi:10.1073/pnas.250471697 (2000).
    11 Pignatelli, A. & Belluzzi, O. Neurogenesis in the Adult Olfactory Bulb. (2010).
    12 Doetsch, F. & ALVAREZ-BUYLLA, A. Network of tangential pathways for neuronal migration in adult mammalian brain Proc. Natl. Acad. Sci. USA 93, 14895–14900 (1996).
    13 Doetsch, F., Caille´, I., Lim, D. A., Garcı´a-Verdugo, J. M. & Alvarez-Buylla, a. A. Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell 97, 703–716 (1999).
    14 Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173-189 (1993).
    15 Yamaguchi, M. & Mori, K. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America 102, 9697-9702, doi:10.1073/pnas.0406082102 (2005).
    16 Lazarini, F. & Lledo, P. M. Is adult neurogenesis essential for olfaction? Trends Neurosci 34, 20-30, doi:10.1016/j.tins.2010.09.006 (2011).
    17 Biebla, M., Coopera, C. M., JuÈ rgen Winklera, b. & Kuhna, H. G. Analysis of neurogenesis and programmed cell death reveals a selfrenewing capacity in the adult rat brain. Neuroscience Letters 291, 17-20 (2000).
    18 Lledo, P. M., Alonso, M. & Grubb, M. S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7, 179-193, doi:10.1038/nrn1867 (2006).
    19 Ulanovsky, N. & Moss, C. F. Hippocampal cellular and network activity in freely moving echolocating bats. Nature neuroscience 10, 224-233, doi:10.1038/nn1829 (2007).
    20 Ulanovsky, N. & Moss, C. F. What the bat's voice tells the bat's brain. Proceedings of the National Academy of Sciences of the United States of America 105, 8491-8498, doi:10.1073/pnas.0703550105 (2008).
    21 Amrein, I., Dechmann, D. K. N., Winter, Y. & Lipp, H.-P. Absent or Low Rate of Adult Neurogenesis in the Hippocampus of Bats (Chiroptera). Plosone 2, 455, doi:10.1371/journal.pone.0000455.g001 (2007).
    22 CHAWANA, R. et al. ADULT NEUROGENESIS IN EIGHT MEGACHIROPTERAN SPECIES. Neuroscience 244, 159-172, doi:10.1016/j.neuroscience.2013.04.020 (2013).
    23 鄭錫奇, 方引平 & 周政翰. 台灣蝙蝠圖鑑. (2010).
    24 Wu, J. H., Han, Y. T., Yu, J. Y. & Wang, T. W. Pheromones from males of different familiarity exert divergent effects on adult neurogenesis in the female accessory olfactory bulb. Developmental neurobiology 73, 632-645, doi:10.1002/dneu.22090 (2013).
    25 Gage, F. H. Mammalian Neural Stem Cells. Science 287, 1433-1438, doi:10.1126/science.287.5457.1433 (2000).
    26 Lehner, B. et al. The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell and tissue research 345, 313-328, doi:10.1007/s00441-011-1213-7 (2011).
    27 Amrein, I., Isler, K. & Lipp, H.-P. Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. European Journal of Neuroscience 34, 978–987, doi:10.1111/j.1460-9568.2011.07804.x (2011).
    28 Jabes, A., Lavenex, P. B., Amaral, D. G. & Lavenex, P. Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. European Journal of Neuroscience 21, 273–285, doi:10.1111/j.1460-9568.2009.07061.x (2010).
    29 Klempin, F. & Kempermann, G. Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257, 271-280, doi:10.1007/s00406-007-0731-5 (2007).
    30 Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the Dentate Gyrus of the Adult Rat: Age-related Decrease of Neuronal Progenitor Proliferation. The Journal of Neuroscience 16, 2027-2033 (1996).
    31 Aizawaa, K., Ageyamab, N., Teraob, K. & Hisatsune, T. Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus. Neurobiology of Aging 32, 140-150, doi:10.1016/j.neurobiolaging.2008.12.011 (2009).
    32 Fa, M. et al. Stress modulation of hippocampal activity - Spotlight on the dentate gyrus. Neurobiology of learning and memory 112C, 53-60, doi:10.1016/j.nlm.2014.04.008 (2014).
    33 Song, J., Christian, K. M., Ming, G. L. & Song, H. Modification of hippocampal circuitry by adult neurogenesis. Developmental neurobiology 72, 1032-1043, doi:10.1002/dneu.22014 (2012).
    34 Akers, K. G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598-602, doi:10.1126/science.1248903 (2014).
    35 Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692-703, doi:10.1016/j.cell.2010.03.037 (2010).
    36 Guo, Z. Maintenance, Differentiation and Regulation of Multipotent Progenitor Cells in the Olfactory Epithelium. (ProQuest, 2008).
    37 Shingo, T. et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117-120, doi:10.1126/science.1076647 (2003).
    38 Moreno, M. M. et al. Olfactory perceptual learning requires adult neurogenesis. Proceedings of the National Academy of Sciences of the United States of America 106, 17980-17985, doi:10.1073/pnas.0907063106 (2009).
    39 Sakamoto, M. et al. Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proceedings of the National Academy of Sciences of the United States of America 108, 8479-8484, doi:10.1073/pnas.1018782108 (2011).
    40 Breton-Provencher, V., Lemasson, M., Peralta, M. R., 3rd & Saghatelyan, A. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 15245-15257, doi:10.1523/JNEUROSCI.3606-09.2009 (2009).
    41 Lazarini, F. et al. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice. Plosone 4, doi:10.1371/journal.pone.0007017.g001 (2009).

    下載圖示
    QR CODE