研究生: |
黃昕樺 |
---|---|
論文名稱: |
從現場教學觀點探討學生學習具乘法 結構的國中物理概念之困難 On learning difficulties of similar symbolic forms in Physics by junior high school students from the perspective of Multiplicative Structures |
指導教授: | 譚克平 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 139 |
中文關鍵詞: | 任務分析 、乘法結構 、物理概念 、物理公式 |
英文關鍵詞: | task analysis, multiplicative structures, physics conception, physics equation |
論文種類: | 學術論文 |
相關次數: | 點閱:142 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在從乘法結構觀點瞭解學生學習國中理化中物理公式的學習困難。研究分為三個部份:一為對國中理化常見的單元進行概念分析、二為針對加速度和牛頓第二運動定律兩單元,蒐集民國91年到101年國中基測相關題目、乘法結構試題及翰林版習題中相關題目進行任務分析、三為由研究者自行編製的乘法結構測驗中,測驗學生的表現。乘法結構測驗使用調查法,工具為研究者研發,以a=∆V/∆t、a=F/m此兩公式為例,以研究者自行編製不同結構題目進行施測。
根據Vergnaud(1988)提出的三種乘法結構:ƒ(λx)=λƒ(x)、ƒ(x)=αx、ƒ(λx+λ’x)= λƒ(x)+ λ’ƒ(x)中,此乘法結構為一種解題策略,研究者將此三種方法應用於物理中,稱為比例法、定義法、拆開法,研究者考慮在物理中成反比情況和公式法的拆開算法,另外提出三種乘法結構ƒ(λx)=1/λ ƒ(x)、ƒ(x)= α/x、ƒ(x+x’)= αx+αx’。題目結構會影響學生使用的乘法結構,根據不同題目結構易使用何種乘法結構,研究者將區分為:定義結構、比例解構、拆開結構題目。施測題目包含此三種結構題目及反比題目,經由預試以及專家審查題目後進行施測。
研究對象採用方便取樣,為新北市某國中三年級的學生,以研究者曾經任教過的三個班級進行施測,捨去幾乎完全空白的無效試卷後,採用有效問卷共40份。根據受試者表現以及高低分各取三位學生進行訪談,以了解學生解題想法以及所使用的乘法結構,再據學生作答以及晤談結果分析,除歸納學生學習困難外,盼從數學角度了解學生在物理公式上的困難。
本研究重要的發現如下:(1) 學生會因題目結構不同而使用不同的乘法結構解題。 (2) 使用比例法時,有些學生無法掌握不變量且易忽略物理條件及意義。 (3) 學生對於變化量、牛頓、分析受力感到困難。 (4) 學生對不同乘法結構看法迥異。 (5) 基測題目聯結數越多其答對率越低。
The purpose of this study was to explore junior high school students’ difficulties in learning physics equations when studying Physics and Chemistry with multiplicative structures. This study contains three parts. The first part analyzed the concepts of the common units in junior high school Physics. The second part collected the questions from the Basic Competence Test for Junior High School Students from 2002 to 2012, the multiplicative structure test questions, and exercises published by Han-Lin regarding the two units, acceleration and Newton's second law of motion, for the task of analyses. The third part tested students’ performances using the multiplicative structure test developed by the researcher. The method adopted for the multiplicative structure test was the survey method. The research tool was developed by the researcher. Two examples were used in the test, a=∆V/∆t and a=F/m. The test was performed with questions of different structures designed by the researcher.
Vergnaud (1988) proposed three multiplicative structures:. ƒ(λx)=λƒ(x)、ƒ(x)=αx、ƒ(λx+λ’x)= λƒ(x)+ λ’ƒ(x). Applying a multiplicative structure is a strategy to resolve a question. The researcher applied these three methods in physics and named them the proportion method, the definition method, and the decomposition method. After considering the cases of inverse ratio and calculations through decomposition of formulas in physics, the researcher proposed another three multiplicative structures: ƒ(λx)=1/λ ƒ(x)、ƒ(x)= α/x、ƒ(x+x’)= αx+αx’. Structures of questions might influence students’ choices of multiplicative structures to be applied. The researcher categorized questions based on suitable multiplicative structures as questions of definition structures, questions of proportion structures, and questions of decomposition structures. The test contained questions from all these three categories and inverse questions. After the pre-test and after the questions were reviewed by the experts, the test was performed.
The research subjects were selected using convenience sampling. They were all third-grade students from a junior high school in New Taipei City. The test was performed in the three classes which the researcher had taught before. After the invalid questionnaires which were almost blank were discarded, a total of 40 valid questionnaires were used. Based on the participants’ performances and scores, three students of high scores, three of medium scores, and three of low scores were selected for interviews in order to find out their thoughts and multiplicative structures they used. According to their answers and the interviews, it was hoped that, besides summarizing students’ difficulties in learning, their difficulties regarding physics equations could also be explored from the aspect of mathematics.
The important findings of this study are as below: Students used different multiplicative structures to solve questions of different structures. When using the proportion method, some students had problems with invariants and therefore may have easily overlooked physical conditions and meanings. Students felt frustrated with variables, Newton’s laws, and analyses of force. Students had different views on multiplicative structures. Higher number of associations of the task analysis on the questions from the Basic Competence Test for Junior High School Students led to lower percentage of correct answers.
一、 中文部分
王宇航、郭玉英、曾路(2006)。在探究教學中促進學生概念轉變。物理通報,2,
28-31。
王克先(1968)。學習心理學。新北市:正中書局。
艾文華(2011)。比值法定義物理概念教學初探。中學生數理化,學研版,5,
60-60。
何東興(2005)。國二學生理化學習焦慮之探討。臺灣師範大學科學教育研究所
學位論文,未出版,臺北市。
林清凉、戴念祖(2005)。力學-牛頓力學、彈性、流體和熱力學。臺北市:五
南圖書出版股份有限公司。
林碧珍(2010)。比與比值初始概念的教學初探。新竹教育大學教育學報第二十
七卷第一期視聽教育雙月刊,27(1),128-160。
邱新生(2001)。物理公式教學十大要點。物理教師,10,006。
邵志芳、余嵐(2008)。試題難度的事前認知任務分析。心理科學,31(3),696-698。
范建東(2000)。物理公式教學中應注意的幾個問題。內蒙古,內蒙古科技與經
濟,S1,1。
柯永河(1995)。習慣心理學。臺北市:張老師文化出版社。
郭佩儀(2007)。從比例問題的表面結構和深層結構探究國一學生的解題表現及
解題策略情形,臺灣師範大學科學教育研究所在職進修碩士班學位論文,
未出版,臺北市。
徐順益(1999)。以類比思考成分探討國二學生在有類比物教學後有關速度與加
速度之解題思考現象。科學教育學刊,7(4),315-341。
張元仲(2005)。從牛頓力學到愛因斯坦相對論。力學與實踐,27(4),1。
張貞瑩、陳立杰(2005)。設計資訊網頁的連結架構與使用者認知風格類型對瀏
覽行為之影響。大同大學碩士論文,未出版,臺北市。
陳東營、張惠博(1999)。國中學生理化解題過程差異與其影響因素之研究。科
學教育,9,54-87。
陳秋萍(2004)。以 TUG-K測驗探討國三學生讀運動學圖形的表現。臺灣師範
大學科學教育研究所在職進修碩士班學位論文,未出版,臺北市。
陳國慶(2011)。高中物理教學中應注重形像思維應用。雅安職業技術學院學報,
1,81-82。
陳瓊瑜(2002)。國小三年級數學學習困難學生乘法應用問題解題歷程之研究。
國立彰化師範大學特殊教育研究所碩士論文,未出版,臺北市。
楊明獻(2010)。改進國中理化課程教學-以電壓與電流單元為例。科學教育,
328,29-44。
葉建德、劉祥通(2005)。一位七年級學生的比率構念—從解速率問題表現的觀
點。科學教育,279,2-20。
廖焜熙(2001)。理化科學概念及過程技能之研究回顧與分析。科學教育,238,
2-11。
鄭振初(2011)。分數乘法結構教學設計。數學教育期刊,45,55-65。
羅幼瓊、林清文(2009)。以提升課業任務價值為導向之課業學習諮商之當事人
任務分析─ 以高中學生學習英文科為例。中華輔導與諮商學報(25),
81-130。
藍雅齡(1998)。讀圖訓練對國二學生理解地球科學圖形之影響。臺北市:國立
臺灣師範大學科學教育研究所碩士論文。未出版。
蘇家弘、黃室苗(2011)。整合任務分析與TRIZ之設計程序研究。虎尾科技大
學機械設計工程研究所學位論文,未出版,雲林縣。
二、 英文部分
Alwan, A. A. (2011). Misconception of heat and temperature among physics
students. Procedia-Social and Behavioral Sciences, 12, 600-614.
Beichner, R. J. (1994). Testing student interpretation of kinematics graphs.
American Journal of Physics , 62, pp.750-762.
Brown, M., Küchemann, D., & Hodgen, J., (2010). The struggle to achieve multiplicative
reasoning 11-14. Proceedings of the Seventh British Congress of Mathematics
Education (BCME7), pp.49-56.
Friel, S. N., Bright G. W., & Curcio, F. R. (1997). Understanding students'
understanding of graphs. Mathematics Teaching in the Middle School, 3(3),
224-227.
Hale, P. (2000). Kinematics and graphs: Students' difficulties and cbls. Mathematics
Teacher, 93(5), 414-417.
Harel, G. & Confrey, J.(1994). The development of multiplicative reasoning in the
learning of mathematics. Albany, NY: State University of New York Press.
Küchemann, D., Hodgen, J., & Brown, M. (2011). Models and representations for
the learning of multiplicative reasoning: Making sense using the double
number line. Proceedings of the British Society for Research into Learning
Mathematics, 31(1), 85-90.
Lamon, S. J. (1993). Ratio and proportion: Connecting content and children's
thinking. Journal for Research in Mathematics Education, 24(1), pp.41-61.
Lamon, S. J. (1995). Ratio and proportion: Elementary didactical phenomenology.
In J. T. Sowder & B.P. Schappelle(Eds.), Providing foundation for
teaching mathematics in the middle grades, pp.167-198.
Milgram, R. J., & Wu, H. H. (nd). Ratios, rates, percents and proportion.CA:
Stanford University & University of California, Berkeley. Retrieved May
13, 2013, from http://www.maa.org/pmet/ratios06.pdf
Resnick, L. B., M. C. Wang & Kaplan, J. (1973). Task analysis in curriculum
design: A hierarchically sequenced introductory mathematics curriculum.
Journal of Applied Behavior Analysis, 6(4), 679-709.
Schraagen, J. M., Chipman, S. F., Shalin V. L. (2000). Cognitive task analysis,
Lawrence Erlbaum associates. New Jersey (Mahwah), pp.237-260.
Shah, P., Hoeffner, J.(2002). Review of graph comprehension research: Implications
for instruction. Educational Psychology Review, 14(1), 47-69.
Sherin, B. L. (1996). The symbolic basis of physical intuition a study of two
symbol systems in physics instruction. Unpublished doctoral dissertation,
University of California, Berkeley.
Sherin, B. L. (2001). How students understand physics equations. Cognition and
instruction, 19(4), 479-541.
Vergnaud, G. (1982). Cognitive and developmental psychology and research in
mathematics education: some theoretical and methodological issues. For the
learning of Mathematics, 3(2), 31-41.
Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & B. Behr(Eds.)
Number Concepts and Operations in the Middle Grades. (pp.141-61).
Reston, VA:NCTM. Reston, Hillsdale, NJ: Erlbaum.