簡易檢索 / 詳目顯示

研究生: 麥真
MAI, Chen
論文名稱: 以多屬性決策分析定義不同情境之次世代手機技術路徑圖
A Multi-Attribute Decision Making Based Scenario Analysis for Technology Roadmaps of Next Generation Handsets
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 羅乃維
Lo, Nal-Wei
何秀青
Ho, Mei HC
黃啟祐
HUANG, Chi-Yo
口試日期: 2022/07/16
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 108
中文關鍵詞: 技術預測情境分析宏觀環境分析模型目標決策分析能力集合擴展
英文關鍵詞: Technology Forecasting, Scenario Analysis, PESTEL Analysis, Multi Criteria Decision Analysis (MCDA), Multi Objective Decision Analysis, Competence Set Expansion
研究方法: 德爾菲法
DOI URL: http://doi.org/10.6345/NTNU202201682
論文種類: 學術論文
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 次世代手機整合包括大規模多輸入多輸出(Multiple-Input Multiple-Output,MIMO)、超高密度網路(ultra-dense networks)、移動網絡、裝置間通訊(device-to-device communication)等先進通訊技術,以滿足未來行動通訊數據量大幅成長以及各類新應用。由於技術複雜,次世代手機的開發,需要溝通和協調,以追求效率。
    技術路徑圖(Technology Roadmap)是一種呈現各種與產品開發相關技術的圖示方法,可用於協調研發活動。因此,自從1980年代美國摩托羅拉(Motorola)公司提出技術路徑圖之概念後,已經廣為科技業與其他產業所採用。然而,少有學者嘗試考慮,不同情境下,應有不同之技術路線圖,但此種考量非常務實,對科技廠商而言,非常重要,對於生命週期短、技術變遷快之次世代手機廠商來說,更是如此。
    因此,本研究擬提出一個基於多屬性決策方法的分析框架,採用基於決策實驗室的分析網絡流程Decision-Making Trial and Evaluation Laboratory (DEMATEL) based analytic network process (DANP)和修正式多準則最佳化妥協解法(Vlsekriterijumska Optimizacija I KOmpromisno Resenje,VIKOR),評估未來最可能之情境。於發展情境之後,將使用基於多目標決策規劃的能力集擴展法,為次世代手機訂定不同情境之下的技術路徑圖。
    本研究將以某全球資訊科技領導廠商之次世代手機開發為例,邀集專家,提供意見,實證分析架構之可行性。依據實證研究結果,次世代手機之技術路徑圖包含處理器、毫米波等元件與應用軟體,發展情境分別為繁榮、成長和趨緩等三種情境與對應之技術路徑圖,可以做為手機業者發展次世代行動電話之依據。

    The design of next-generation mobile phones integrates numerous techniques, including large-scale multi-input and multi-output (MIMO), ultra-dense networks, moving networks and device-to-device communication advance communication technologies. The integration of novel techniques aims to meet the mobile data volume growth and all kinds of new applications. Due to the complexity of the technology, the development of next-generation mobile phones requires communication and coordination in order to pursue efficiency.
    Technology roadmap is a graphical approach to present various technologies related to the product development and can be used to coordinate research and development (R&D). Therefore, since Motorola introduced the concept of technology roadmap in the 1980s, it has been widely adopted by the technology industry and other industries. However, few scholars have tried to consider that there should be different technology roadmaps in different contexts, but such considerations are very pragmatic and important for technology manufacturers, especially for the next-generation cellphone manufacturers with short life cycles and fast-changing technologies.
    Therefore, this study aims to propose an analytic framework based on multiple criteria decision making (MCDM) techniques. The Decision-Making Trial and Evaluation Laboratory (DEMATEL) based analytic network process (DANP) and the modified VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) method will be adopted for evaluating possible scenarios. Competence set expansion method based on multi-objective decision making will be used to for next generation handsets in different scenarios.
    This study will take the next-generation handset development of a leading global (IT) company as an example and invite experts to provide opinions and empirical evidence to analyze the feasibility of the framework. According to the results from empirical research, the technology roadmap of the next-generation handsets includes central processing unit (CPU), millimeter wave (mmWave), other components, the application software. The derived scenarios include the prosperity, the growth, and the slow-growth. Technology roadmaps for each scenario is also developed. The analytic results from this study can serve as the basis for the development of the next-generation handsets.

    Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Purposes 3 1.3 Motivations 4 1.4 Analytical Structure 5 1.5 Research Methods 5 1.6 Research Limitations 6 1.7 Overview of the Thesis 7 Chapter 2 Literature Review 9 2.1 Technology Forecasting 9 2.2 Technology Roadmaps 11 2.3 Scenario Planning 12 2.4 Scenario and Technology Roadmapping 14 2.5 PESTEL Analysis 16 Chapter 3 Research Method 19 3.1 Modified Delphi 19 3.2 DEMATEL 21 3.3 DANP 22 3.4 VIKOR 23 3.5 MOP Based Competence Set Expansions 24 Chapter 4 Empirical Study 27 4.1 Choosing the Development Scenarios 27 4.2 The Technologies of Competence Set Expansion 62 Chapter 5 Discussion 81 5.1 Combination of Scenarios and Technology Platform Deployment 81 Chapter 6 Conclusions 85 References 87 Appendixes 95 Appendix A PESTEL Questionnaire 95 Appendix B VIKOR Questionnaire 101 Appendix C Competence Set Expansion Questionnaire 105

    Adshead, D., Thacker, S., Fuldauer, L. I., & Hall, J. W. (2019). Delivering on the Sustainable Development Goals through long-term infrastructure planning. Global Environmental Change, 59, 101975.
    Ai, Y., Peng, M., & Zhang, K. (2018). Edge computing technologies for Internet of Things: a primer. Digital Communications and Networks, 4(2), 77-86.
    Albright, R. E., & Kappel, T. A. (2003). Roadmapping in the corporation. Research-Technology Management, 46(2), 31-40.
    Allaoui, H., Guo, Y., & Sarkis, J. (2019). Decision support for collaboration planning in sustainable supply chains. Journal of Cleaner Production, 229, 761-774.
    Altuntas, S., Dereli, T., & Kusiak, A. (2015). Forecasting technology success based on patent data. Technological Forecasting and Social Change, 96, 202-214.
    Amer, M., Daim, T. U., & Jetter, A. (2013). A review of scenario planning. Futures, 46, 23-40.
    Burt, G., Wright, G., Bradfield, R., Cairns, G., & Van Der Heijden, K. (2006). The role of scenario planning in exploring the environment in view of the limitations of PEST and its derivatives. International Studies of Management & Organization, 36(3), 50-76.
    Chae, B. K. (2019). The evolution of the Internet of Things (IoT): A computational text analysis. Telecommunications Policy, 43(10), 101848.
    Culot, G., Orzes, G., Sartor, M., & Nassimbeni, G. (2020). The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0. Technological Forecasting and Social Change, 157, 120092.
    Daim, T., Oliver, T., & Kim, J. (2013). Research and Technology Management in the Electricity Industry: Methods, Tools and Case Studies. London, U.K.: Springer.
    De Alcantara, D. P., & Martens, M. L. (2019). Technology Roadmapping (TRM): a systematic review of the literature focusing on models. Technological Forecasting and Social Change, 138, 127-138.
    Diez-Olivan, A., Del Ser, J., Galar, D., & Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92-111.
    Ferreira, J., Coelho, A., & Moutinho, L. (2020). Dynamic capabilities, creativity and innovation capability and their impact on competitive advantage and firm performance: The moderating role of entrepreneurial orientation. Technovation, 92, 102061.
    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland, 1-8.
    Hain, D. S., Jurowetzki, R., Buchmann, T., & Wolf, P. (2022). A text-embedding-based approach to measuring patent-to-patent technological similarity. Technological Forecasting and Social Change, 177, 121559.
    Ho, J.-Y., & O’Sullivan, E. (2018). Standardisation framework to enable complex technological innovations: The case of photovoltaic technology. Journal of Engineering and Technology Management, 50, 2-23.
    Hofmann, E., & Rüsch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23-34.
    Huang, C.-Y., Wang, L.-C., Kuo, Y.-T., & Huang, W.-T. (2021). A Novel Analytic Framework of Technology Mining Using the Main Path Analysis and the Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process. Mathematics, 9(19), 2448.
    Huss, W. R., & Honton, E. J. (1987). Scenario planning—what style should you use? Long Range Planning, 20(4), 21-29.
    Hussain, S. T., Lei, S., Akram, T., Haider, M. J., Hussain, S. H., & Ali, M. (2018). Kurt Lewin's change model: A critical review of the role of leadership and employee involvement in organizational change. Journal of Innovation & Knowledge, 3(3), 123-127.
    Islim, M. S., & Haas, H. (2019). Modulation techniques for li-fi. ZTE Communications, 14(2), 29-40.
    Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586.
    Kabalci, Y. (2019). 5G mobile communication systems: Fundamentals, challenges, and key technologies. In Smart grids and their communication systems (pp. 329-359): Springer.
    Keegan, R. J., Barnett, L. M., Dudley, D. A., Telford, R. D., Lubans, D. R., Bryant, A. S., . . . Weissensteiner, J. R. (2019). Defining physical literacy for application in Australia: A modified delphi method. Journal of Teaching in Physical Education, 38(2), 105-118.
    Kent, M. L., & Saffer, A. J. (2014). A Delphi study of the future of new technology research in public relations. Public Relations Review, 40(3), 568-576.
    Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228-237.
    Kim, J., & Geum, Y. (2021). How to develop data-driven technology roadmaps: The integration of topic modeling and link prediction. Technological Forecasting and Social Change, 171, 120972.
    Kizawa, Y., Tsuneto, S., Tamba, K., Takamiya, Y., Morita, T., Bito, S., & Otaki, J. (2012). Development of a nationwide consensus syllabus of palliative medicine for undergraduate medical education in Japan: a modified Delphi method. Palliative Medicine, 26(5), 744-752.
    Knight, L., Meehan, J., Tapinos, E., Menzies, L., & Pfeiffer, A. (2020). Researching the future of purchasing and supply management: The purpose and potential of scenarios. Journal of Purchasing and Supply Management, 26(3), 100624.
    Koksalmis, E., & Kabak, Ö. (2019). Deriving decision makers’ weights in group decision making: An overview of objective methods. Information Fusion, 49, 146-160.
    Kostoff, R. N., & Schaller, R. R. (2001). Science and technology roadmaps. IEEE Transactions on Engineering Management, 48(2), 132-143.
    Kuo, T. C., Hsu, C.-W., & Li, J.-Y. (2015). Developing a green supplier selection model by using the DANP with VIKOR. Sustainability, 7(2), 1661-1689.
    Larbani, M., & Yu, P.-L. (2017). Competence set analysis, decision blinds and decision-making. In Wonderful Solutions and Habitual Domains for Challenging Problems in Changeable Spaces (pp. 123-145): Springer.
    Larbani, M., & Yu, P. L. (2014). Effective decision making in changeable spaces, covering and discovering processes: A habitual domain approach. In Human-Centric Decision-Making Models for Social Sciences (pp. 131-161): Springer.
    Lee, H., & Geum, Y. (2017). Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP. Technological Forecasting and Social Change, 117, 12-24.
    Li, X., Xie, Q., Daim, T., & Huang, L. (2019). Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 432-449.
    Li, X., Xie, Q., Jiang, J., Zhou, Y., & Huang, L. (2019). Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 687-705.
    Li, Y., Shi, X., & Phoumin, H. (2021). A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis. International Journal of Hydrogen Energy.
    Liu, J., Chang, H., Forrest, J. Y.-L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors. Technological Forecasting and Social Change, 158, 120142.
    Lizaso, F., & Reger, G. (2004). Linking roadmapping and scenarios as an approach for strategic technology planning. International Journal of Technology Intelligence and Planning, 1(1), 68-86.
    Meesapawong, P., Rezgui, Y., & Li, H. (2014). Planning innovation orientation in public research and development organizations: Using a combined Delphi and Analytic Hierarchy Process approach. Technological Forecasting and Social Change, 87, 245-256.
    Murry, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The review of Higher Education, 18(4), 423-436.
    Nemet, G. F., Anadon, L. D., & Verdolini, E. (2017). Quantifying the effects of expert selection and elicitation design on experts’ confidence in their judgments about future energy technologies. Risk Analysis, 37(2), 315-330.
    Oliver, J. J., & Parrett, E. (2018). Managing future uncertainty: Reevaluating the role of scenario planning. Business Horizons, 61(2), 339-352.
    Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5-21.
    Opricovic, S., & Tzeng, G.-H. (2003). Fuzzy multicriteria model for postearthquake land-use planning. Natural Hazards review, 4(2), 59-64.
    Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127-182.
    Phaal, R., Farrukh, C. J., & Probert, D. R. (2009). Visualising strategy: a classification of graphical roadmap forms. International Journal of Technology Management, 47(4), 286-305.
    Probert, D., & Radnor, M. (2003). Frontier experiences from industry-academia consortia. Research-Technology Management, 46(2), 27-30.
    Quezada, L. E., López-Ospina, H. A., Palominos, P. I., & Oddershede, A. M. (2018). Identifying causal relationships in strategy maps using ANP and DEMATEL. Computers & Industrial Engineering, 118, 170-179.
    Quyên, Đ. T. N. (2014). Developing university governance indicators and their weighting system using a modified Delphi method. Procedia-Social and Behavioral Sciences, 141, 828-833.
    Rahman, M. (2019). PESTEL analysis of the United Arab Emirates (UAE). In: October
    Raj, A., Kumar, J. A., & Bansal, P. (2020). A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles. Transportation Research Part A: Policy and Practice, 133, 122-137.
    Ramirez, R., Mukherjee, M., Vezzoli, S., & Kramer, A. M. (2015). Scenarios as a scholarly methodology to produce “interesting research”. Futures, 71, 70-87.
    Ramírez, R., & Selin, C. (2014). Plausibility and probability in scenario planning. Foresight, 16(1), 54-74.
    Rao, S.-H. (2021). A hybrid MCDM model based on DEMATEL and ANP for improving the measurement of corporate sustainability indicators: A study of Taiwan High Speed Rail. Research in Transportation Business & Management, 41, 100657.
    Ringland, G. (2002). Scenarios in business: Wiley.
    Robinson, D. K., & Propp, T. (2008). Multi-path mapping for alignment strategies in emerging science and technologies. Technological Forecasting and Social Change, 75(4), 517-538.
    Rossouw, A., Hacker, M., & de Vries, M. J. (2011). Concepts and contexts in engineering and technology education: An international and interdisciplinary Delphi study. International Journal of Technology and Design Education, 21(4), 409-424.
    Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54(5), 758-790.
    Saritas, O., & Aylen, J. (2010). Using scenarios for roadmapping: The case of clean production. Technological Forecasting and Social Change, 77(7), 1061-1075.
    Schoemaker, P. J. (1995). Scenario planning: a tool for strategic thinking. Sloan Management Review, 36(2), 25-50.
    Son, W., & Lee, S. (2019). Integrating fuzzy-set theory into technology roadmap development to support decision-making. Technology Analysis & Strategic Management, 31(4), 447-461.
    Strauss, J. D., & Radnor, M. (2004). Roadmapping for dynamic and uncertain environments. Research-Technology Management, 47(2), 51-58.
    Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165, 223-233.
    Tandon, A., Kaur, P., Mäntymäki, M., & Dhir, A. (2021). Blockchain applications in management: A bibliometric analysis and literature review. Technological Forecasting and Social Change, 166, 120649.
    Tzeng, G.-H., Chiang, C.-H., & Li, C.-W. (2007). Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32(4), 1028-1044.
    Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190.
    Van der Heijden, K. (2011). Scenarios: the art of strategic conversation: John Wiley & Sons.
    Van der Heijden, K., Bradfield, R., Burt, G., Cairns, G., & Wright, G. (2009). The sixth sense: Accelerating organizational learning with scenarios: John Wiley & Sons.
    Varum, C. A., & Melo, C. (2010). Directions in scenario planning literature–A review of the past decades. Futures, 42(4), 355-369.
    Vermesan, O., & Friess, P. (2022). Internet of things applications-from research and innovation to market deployment: CRC Press.
    Wang, B., Liu, Y., Zhou, Y., & Wen, Z. (2018). Emerging nanogenerator technology in China: A review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods. Nano Energy, 46, 322-330.
    Wang, M., Sha, Z., Huang, Y., Contractor, N., Fu, Y., & Chen, W. (2018). Predicting Product co-consideration and market competitions for technology-driven product design: a network-based approach. Design Science, 4.
    Werth, O., Schwarzbach, C., Rodríguez Cardona, D., Breitner, M. H., & Graf von der Schulenburg, J.-M. (2020). Influencing factors for the digital transformation in the financial services sector. Zeitschrift Für Die Gesamte Versicherungswissenschaft, 109(2), 155-179.
    Winkler, J., Kuklinski, C. P. J.-W., & Moser, R. (2015). Decision making in emerging markets: The Delphi approach's contribution to coping with uncertainty and equivocality. Journal of Business Research, 68(5), 1118-1126.
    Yazdi, M., Khan, F., Abbassi, R., & Rusli, R. (2020). Improved DEMATEL methodology for effective safety management decision-making. Safety Science, 127, 104705.
    Yeganeh, R., Mohammadfam, I., Soltanian, A., & Aliabadi, M. M. (2022). An integrative fuzzy Delphi Decision Making Trial and Evaluation Laboratory (DEMATEL) study on the risk perception influencing factors. International Journal of Occupational Safety and Ergonomics, 1-30.
    Yoon, K. (1987). A reconciliation among discrete compromise solutions. Journal of the Operational Research Society, 38(3), 277-286.
    Yu, P.-L., & Chen, Y.-C. (2010). Dynamic MCDM, habitual domains and competence set analysis for effective decision making in changeable spaces. Trends in Multiple Criteria Decision Analysis, 1-35.
    Zhan, Y., & Tan, K. H. (2020). An analytic infrastructure for harvesting big data to enhance supply chain performance. European Journal of Operational Research, 281(3), 559-574.
    Zhang, Y., Zhang, G., Chen, H., Porter, A. L., Zhu, D., & Lu, J. (2016). Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. Technological Forecasting and Social Change, 105, 179-191.

    無法下載圖示 本全文未授權公開
    QR CODE