簡易檢索 / 詳目顯示

研究生: 黃逸翔
Yi-Shiang Huang
論文名稱: 使用超連續雷射光源的高解析度高靈敏度光譜域光學同調斷層掃描術
Spectral domain optical coherence tomography based on supercontinuum laser for high resolution and high sensitivity imaging
指導教授: 郭文娟
Kuo, Wen-Chuan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 45
中文關鍵詞: OCT
英文關鍵詞: OCT
論文種類: 學術論文
相關次數: 點閱:244下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的主題在於以超連續白光雷射作為光源,建構一套具有高解析度與高靈敏度的光譜域光學同調斷層顯微術(Spectral Domain Optical Coherence Tomography, SD-OCT)。於系統架構中我們引入了平衡式偵測法(Balance Detection, BD),不僅能夠提升干涉訊號為兩倍,還能夠大幅度的降低自相干雜訊與直流項。經由實驗證明這套以平衡式偵測法為架構的高解析度高靈敏度SD-OCT系統能夠提供於生物樣品中達2m的縱向解析力,最快的成像速度可以達到每秒45,000條軸向掃描,其中每條為4096個畫素。在訊雜比部分,我們證明了於1mm的成像深度內能夠較一般的SD-OCT系統提升8~14dB的訊雜比。我們也將系統用於蓋玻片、膠帶來測試效能,並且實際應用於人類的甲襞微血管與手掌汗腺這兩種生物樣品的活體掃描。最後,我們嘗試使用貝索光束(Bessel beam)來延長這套高解析高靈敏的SD-OCT系統的景深。

    In this study, we present a new high resolution and high sensitivity spectral domain optical coherence tomography (SD-OCT) system that profits from the enhanced resolution performance of supercontinuum laser. The use and advantages of balanced detection (BD) in this system are also demonstrated. Not only does this system suppress artifacts due to autocorrelation, but also the signal of interest is increased by a factor of 2 as experimentally verified. Our BD-based high resolution SD-OCT gives an axial resolution of near 2 m in tissue and 45,000 axial scans per second at 4096 pixels per axial scan. A signal-to-noise ratio (SNR) improvement of a 8~14 dB for the peak within 1 mm compared to standard SD-OCT using single detection scheme was also demonstrated. This method is validated by experimental measurement of a glass plate, adhesive tape, and in vivo imaging of the human capillary under nailfold and sweat gland on palm. Finally, we also verified the possibility of using Bessel beam illumination to extend the depth of focus in our proposed high resolution and high sensitivity SD-OCT system.

    中文摘要...................................................I Abstract..................................................II 目錄.....................................................III 圖目錄.....................................................V 第一章 緒論.................................................1 1.1 簡介...................................................1 1.2 研究動機與目的..........................................1 第二章 理論背景.............................................3 2.1 SD-OCT的原理與Z max計算.................................3 2.1.1 SD-OCT的原理.........................................3 2.1.2 Z max計算............................................6 2.2 使用不同的聚焦光束在橫像解析度與景深的差異..................8 2.2.1 高斯光束聚焦..........................................9 2.2.2 貝索光束.............................................11 第三章 實驗架構............................................14 3.1 系統介紹...............................................14 3.2 實驗儀器及參數.........................................17 3.2.1 實驗光源.............................................17 3.2.2 光譜儀..............................................18 3.3 樣品端的掃描與成像系統..................................19 IV 第四章 結果與討論...........................................20 4.1 高斯光束系統...........................................21 4.1.1 縱向解析度...........................................21 4.1.2 橫向解析度...........................................23 4.1.3 利用平衡式偵測法來消除多層狀樣品的直流項與自相干雜訊並提升SNR ..25 4.2 高斯光束系統用於高散射生物樣品量測........................30 4.2.1 甲襞微血管...........................................30 4.2.2 指腹汗腺 ............................................36 4.3 利用貝索光束來延長景深..................................39 4.3.1 縱向解析度...........................................40 4.3.2 橫向解析度與景深......................................41 第五章 結論與未來展望.......................................44 參考文獻...................................................45

    1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–81 (1991).
    2. C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32, 616–624 (1991).
    3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    4. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
    5. U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” Proc. SPIE 2981, 20–28 (1997).
    6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    8. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    9. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–9 (2003).
    10. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch Ophthalmol 113, 325-332 (1995).
    11. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," J. Am. Acad. Dermatol. 37, 958-963 (1997).
    12. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical Coherence Tomography of the Skin," Skin Bioengineering Techniques and Applications in Dermatology and Cosmetology 26, 27-37, (1998).
    13. J. Rogowska, C. M. Bryant, and M. E. Brezinski, "Cartilage thickness measurements from optical coherence tomography," Journal of the Optical Society of America. A 20, 357-367 (2003).
    14. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography," Optics Letters26, 518-520 ( 2001).
    46
    15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain opticalcoherence microscopy”, OPTICS LETTERS, Vol. 31, No. 16, August 15(2006).
    16. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolutionoptical coherence tomography with micro-opticaxicon providing extended focusing range,” OPTICS LETTERS, Vol. 33, No. 15, August 1(2008).
    17. J. Holmes, S. Hattersley, N. Stone, F. B Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. of SPIE 6847, 68470o-1 (2008).
    18. W. C. Kuo, Y. S. Lai, C. M. Lai, and Y. S. Huang, "Balanced-detection spectral domain OCT with a multi-line single camera for SNR enhancement," submitted to Appl. Opt. 2012.
    19. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherencemicroscope with enhanced resolving power in thick tissue,” Optics Communications 142, 203-207 (1997).
    20. J. Durnin, J. J. Micely, Jr. J. H. Eberly, “Diffraction-free beam”, Phys. Rev. Lett. 58, 1499-1501 (1987).
    21. F. Gori, G. Guattari, C. Padovani. “Bessle-Gauss beams”, Opt. commun., 64(6), 491-495 (1987).
    22. G. Scott and N. Mcardle, “Efficient generation of nearly diffractive-free beam using anaxicon,” Opt. Eng. 992.31(12), 2640-2643 (2007).
    23. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator:analytical descriptio and experiment,” Applied opt.41(30), 6375-6379 (2002).
    24. Z. Jiang, Q. Lu, and Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt 34(31), 7183-7185(1995).

    QR CODE